

MICROBIAL FUEL CELLS

Aprovechamiento del potencial energético de sedimentos contaminados con hidrocarburos

Using anode-respiring bacteria to generate direct electrical current from hydrocarbon sediments

Dra Katy Juárez López

partamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, UNAM.

BIOENERGY AND ENVIRONMENT

Geobacter sulfurreducens: model bacteria for extracellular electron transfer

bioelectricity

Microbial Fuel Cell (MFC)

Geopili "nanocables"

- Subsurface bacteria, anaerobic
- Biogeochemical cycles Fe and Mn.
- Electron transfer to extracellular insoluble acceptors.
- More than 100 cyt

Bioremediation

Hydrocarbon degradation

Microbial Fuel Cell

- BIOFILM (electron transfer)
- Anode material and architectute MFC
- Inhibiting metabolites
- Internal resistance

Biofilm characterization in MFC

Mutant PilA-Biofilm non conductive

Mutante Flp1-

¿Cómo se lleva a cabo la transferencia de electrones?

M. Kronenberg et al. / Environmental Pollution 231 (2017) 509-523

a] Early MFC System Cost in \$/m ²		b] MFC Cost with New Materials in \$/m				
	Cost		Cost			
Carbon Cloth	~ \$1000	Anode	~ \$20			
Platinum Catalyst	~ \$500	Cathode	~ \$22			
Binder	~ \$700	Binder	~ \$1.50			
Diffusion Layer	~ \$0.30	Activated Carbon [cathode/catalyst]	~ \$0.40			
Separator	~ \$1.00	Diffusion Layer	~ \$0.15			
Total	~\$2200	Separator	~ \$1.00			
		Total	~ \$43			

from [169,170].

Biorefineries

Producción de electricidad de sedimentos acuáticos y desechos orgánicos

ISOLATION OF MICROBIAL CONSORTIA METAL REDUCERS AND HYDR DEGRADERS

Coatzacoalcos

Estero del Pantano

185

BACTERIAL DIVERSITY 16s DNAr

MICROORAGANISMO	Identidad
Geobacter sp. Strain AK14	96%
Geobacter sp. Strain G02	99%
Geobacter sp. Strain CdA-3	99%
Petrinomonas sp. Strain B50-1	99%
Clostridium sp. Strain AP	99%
Clostridium amygdalinum strain 48AGP6	95%
Porphyromonas sp. HCB-7	95%
Geobacter sp. Strain CdA-3	92%

Fe(III) as electron acceptor : acetate and HYD as electron donor.

HEAVY METALS SITE 1

	U (ppm)	Pb (ppm)	Tl (ppm)	Hg (ppm)	Cr (ppm)	Mn (ppm)
SED. SITIO1	0.8	9.3	0.27	120	40.8	300

Limite permisible de Hg en sedimento (OMS) 0.1ppm

MICROBIAL DIVERSITY COATZACOALCOS RIVER

Amplicon 16s rDNA (V3-V4). Taxonomic Assignment Phylum level

Candidato a Phylum	Procedencia
KSB3 (Tanner <i>et al., 2000</i>)	biorreactor anaeróbico de tratamiento de aguas residuales.
OP3 (<i>Omnitrophica</i>) (Stevens <i>et. al</i> 2008)	Sedimentos marinos con baja concentración de oxígeno.
AC1 (Harris <i>et al.,</i> 2004)	Sedimento marino, birreactor de desnitrificación
GN04 (Narihiro <i>et al.</i> ,2015)	Sedimentos marinos, planta tratadora de efluentes industriales
WS3 (Dojka <i>et al.,</i> 1998)	Acuífero contaminado con hidrocarburo y compuestos clorados
OP8 (<i>Aminicenantes</i>) (Farag <i>et al.,</i> 2014)	Sedimentos acuáticos contaminados con hidrocarburos

Amplicon 16s rDNA (V3-V4). Taxonomic Assignment Genera level

Clona	Procedencia
GOUTA19 (Alfreider et al., 2002)	Aguas contaminadas con mono-clorobenceno
SJA-88 (Wintzingerode, 1999)	Sedimento en hidrocarburos aromáticos policíclicos
LCP-26 (Kostka <i>et al.,</i> 2004)	Sedimento marino contaminado mercurio e hidrocarburo
LCP-6 (Kostka <i>et al.,</i> 2004)	Sedimento marino contaminado mercurio e hidrocarburo

BES : MATERIALS LOW COST

TOTAL HYDROCARBON DEGRADATION

DIFFERENT ARCHITECTURE IN BES AND ANODES

POWER DENSITY OF DIFFERENT CELLS

Densidad de Corriente/ mA cm⁻²

DP 1C1S→7.48*10⁻⁵mW/cm²

4C4S→6.80*10⁻⁴mW/cm²

BCM	Sustrato	Área y	Área	Modificación	Dist	Separador	PCA	Resist	DC Max	DP Max
	Anolito	Material	Cátodo	Cátodo	Elect		V	Interna	mA cm ⁻²	mW cm ⁻²
		Ánodo	CF					Ω		
3c 4s	Sedimento	4 CF	0.00785	Sin	0.005	Barro	0.67	1195	1.5x10 ⁻³	6.8x10 ⁻⁴
	sitio 1	Seg	m²	Modificación	m					
		0.00785								
		m²								

Samples

Genus Bacterias

ANODE AND CATHODE REACTION IN BES

Schievano et al (2016) TIBTEC 1379

Trends in Biotechnology

ELECTROACTIVE MICROORGANISMS AND ELECTROTROPHS

Published in: P. J. Strong; S. Xie; W. P. Clarke; *Environ. Sci. Technol.* **2015**, 49, 4001-4018. Copyright © 2015 American Chemical Society

ANODE AND CATHODE REACTION IN BES

ELECTRON TRANSFER INTER-SPECIES BACTERIA: ARCHAEA

LETTER

doi:10.1038/nature15733

Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria

Gunter Wegener^{1,2}*, Viola Krukenberg¹*, Dietmar Riedel³, Halina E. Tegetmeyer^{4,5} & Antje Boetius^{1,2,4}

BCM	Sustrato	Área y	Área	Modificación	Dist	Separador	PCA	Resist	DC Max	DP Max
	Anolito	Material Ánodo	Cátodo	Cátodo	Elect		V	Interna	mA cm ⁻²	mW cm ⁻²
Pecera 1	Sedimento sitio 1	CF 0.0112 m ²	0.01125 m ²	Sin Modificación	0.05 m	Barro y Sedimento	0.3	2042	7x10 ⁻⁴	1.2x10 ⁻⁴
Pecera 2	Sedimento sitio 1	CF 0.0112 m ²	0.01125 m ²	Acetato cámara anódica	0.05 m	Barro y Sedimento	0.6	3149	4.8x10 ⁻⁴	7.21x10 ⁻⁵
2a	Sedimento sitio 1	CF 0.00785 m ²	0.00785 m ²	Sin Modificación	0.04 m	Sedimento	0.3	1013	1.5x10 ⁻³	3.1x10 ⁻⁴
3c 1s	Sedimento sitio 1	1 CF Seg 0.00785 m ²	0.00785 m ²	Sin Modificación	0.005 m	Barro	0.48	4592	3.74x10 ⁻⁴	7.48x10 ⁻⁵
3c 2s	Sedimento sitio 1	2 CF Seg 0.00785 m ²	0.00785 m ²	Sin Modificación	0.005 m	Barro	0.77	9847	3.6x10 ⁻⁴	1.6x10 ⁻⁴
3c 3s	Sedimento sitio 1	3 CF Seg 0.00785 m ²	0.00785 m²	Sin Modificación	0.005 m	Barro	0.58	4613	8.4x10 ⁻⁴	2.52x10 ⁻⁴
3c 4s	Sedimento sitio 1	4 CF Seg 0.00785 m ²	0.00785 m ²	Sin Modificación	0.005 m	Barro	0.67	1195	1.5x10 ⁻³	6.8x10 ⁻⁴
3c 4s Aire en Catolito	Sedimento sitio 1	4 CF Seg 0.00785 m ²	0.00785 m ²	Sin Modificación	0.005 m	Barro	0.33	1314	1.8x10 ⁻³	2.5x10 ⁻⁴

DATA OF DIFFERENT BES CHARACTERIZED

-	BCM	Sustrato Anolito	Área y Material Ánodo	Área Cátodo CF	Modificación Cátodo	Dist Elect	Separador	PCA V	Resist Interna Ω	DC Max mA cm ⁻²	DP Max mW cm ⁻²
	Celda A	Sedimento sitio 4	5 CP Seg 0.0025 m ²	0.00785 m ²	Sin Modificación	0.04 m	Sedimento	0.69	7856	2.2x10 ⁻³	6.5x10 ⁻⁴
	Celda B	Sedimento + 3 g. Diésel	4 CF Seg 0.0025 m ²	0.00785 m ²	Sin Modificación	0.04 m	Sedimento	0.6	9371	1.3x10 ⁻³	6x10 ⁻⁴
	Celda C	Sedimento + 9 g. Diésel	4 CF Seg 0.0025 m ²	0.00785 m ²	Sin Modificación	0.04 m	Sedimento	0.64	7927	2.7x10 ⁻³	8.7x10 ⁻⁴
<	Celda D	Sedimento + 15 g. Diésel	4 CF Seg 0.0025 m ²	0.00785 m ²	Sin Modificación	0.04 m	Sedimento	0.56	7199	1.4x10 ⁻³	8.5x10 ⁻⁴
	Celda A	Sedimento sitio 4	5 CP Seg 0.0025 m ²	0.00785 m ²	Catalizado KMnO ₄	0.04 m	Sedimento	0.71	1654	4.7x10 ⁻³	1.8x10 ⁻³
	Celda B	Sedimento + 3 g. Diésel	4 CF Seg 0.0025 m ²	0.00785 m²	Catalizado KMnO ₄	0.04 m	Sedimento	0.77	1365	7.2x10 ⁻³	2.3x10 ⁻³
	Celda C	Sedimento + 9 g. Diésel	4 CF Seg 0.0025 m ²	0.00785 m ²	Catalizado KMnO ₄	0.04 m	Sedimento	0.76	4162	3.3x10 ⁻³	1.3x10 ⁻³

REFERENCIA	DP Max
Bioresurce Tecnology (Chandrasekhar et al., 2012)	4.23x10 ⁻⁴ mW cm ⁻² . Lodos de refinería.
Chemical Engineering Journal(Morros et al., 2008)	3.2x10 ⁻³ mW cm ⁻² . Agua subterránea contaminada+diésel. Identificación de bacterias.
Biosensors and Bioelectronics (Li et al., 2016)	1.73x10 ⁻³ mW cm ⁻² . Suelo contaminado con hidrocarburo.Plataforma petrolera

Agradecimientos

CATEDRA-CONACYT

Dr. J. Alberto Hernández

- Manuel Huerta (L)

ESTUDIANTES

- Lidia Piñones (L)
- Nadia Moreno(L)
- David Papaqui (L)
- Emmanuel Alvizo(M)
- Xadeni Flores(M)
- Berenice Cruz (M)
- Fanny A. Flores(D)
- Getzabeth González (D)
- Paloma Lara (D)

COLABORADORES

- Dr. Alberto Alvarez CIICAP (UAEM)
- Dra. Margarita Hernández Instituto de E. Renovables (UNAM)
- Dra. Leticia Vega CCADET (UNAM)
 - Dr. Derek Lovley UMASS

FINANCIAMIENTO

GRACIAS POR SU ATENCIÓN

CALCULO DE PARÁMETROS ELECTROQUÍMICOS

