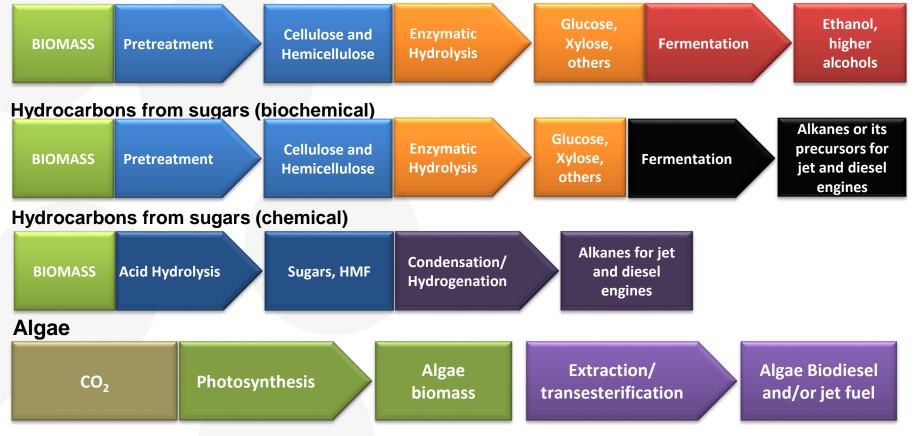


Biorefineries in Europe

Francisco Gírio

Coordinator of SMIBIO

Head of Bioenergy Unit LNEG - Laboratório Nacional de Energia e Geologia Lisboa, Portugal


> REPÚBLICA PORTUGUESA ECONOMIA

Curnevaca, MX, Nov 14th, 2017

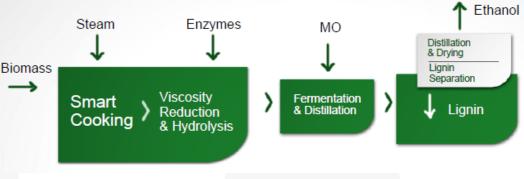
Current Status of Advanced Biorefineries in Europe using (Bio)chemical Processing of Biomass

Feedstocks: Lignocellulosic materials, MSW, Other organic wastes, Algae

Lignocellulosic ethanol, higher alcohols

Biochemtex/BetaRenewables

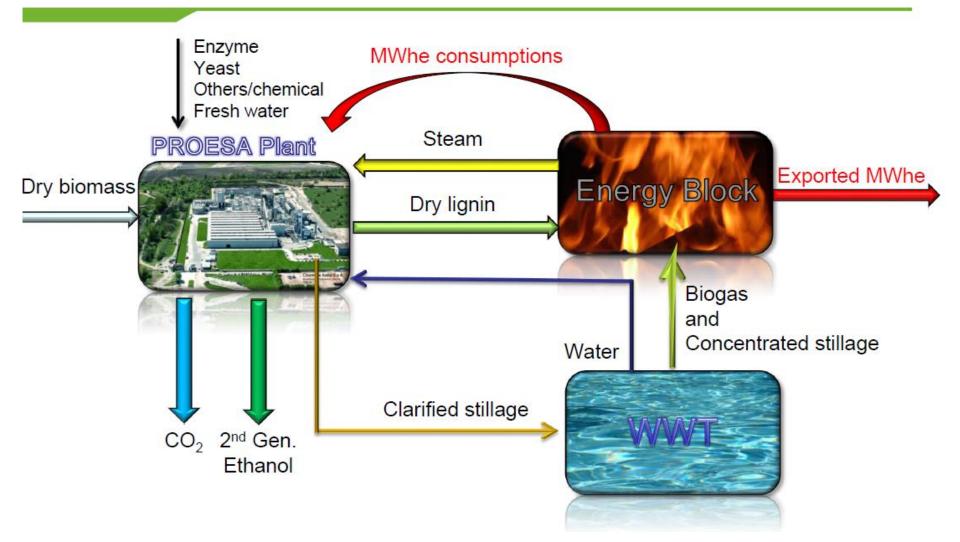
First <u>commercial</u> cellulosic bioetanol plant in Europe has been deployed in Crescentino, Italy, since end 2013


Raw material: 270.000 ton/year cereals straw, (in future: arundo donax)

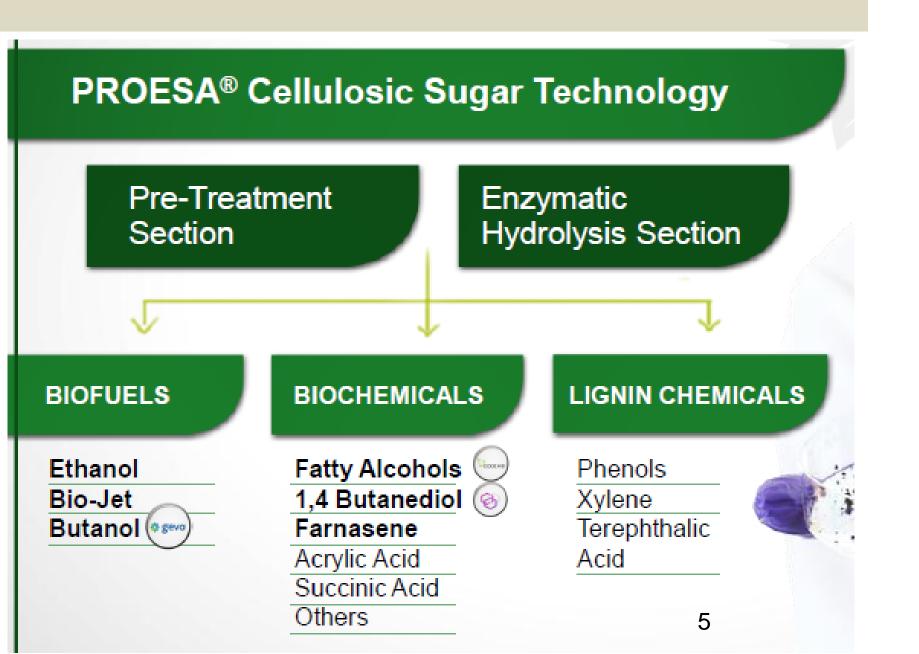
Product: Ethanol (60.000 ton/year), biogas, H₂, lignin for energy

Production process: uncatalyzed two-stage steam explosion, enzymatic hydrolysis and co-fermentation of C_5 and C_6

Biochemtex/BetaRenewables


Proesa® technology – Phase 1

2G Ethanol plant configuration



Source: Dario Giordano (Biochemtex) at 4th ICLE

4

Proesa® technology (Biochemtex/Beta-renewables) – Phase II

Inbicon/Dong Energy

Local: Kalundborg (Denmark) – Demo plant

Start-up: 2009

Raw material: 30.000 ton/year wheat straw

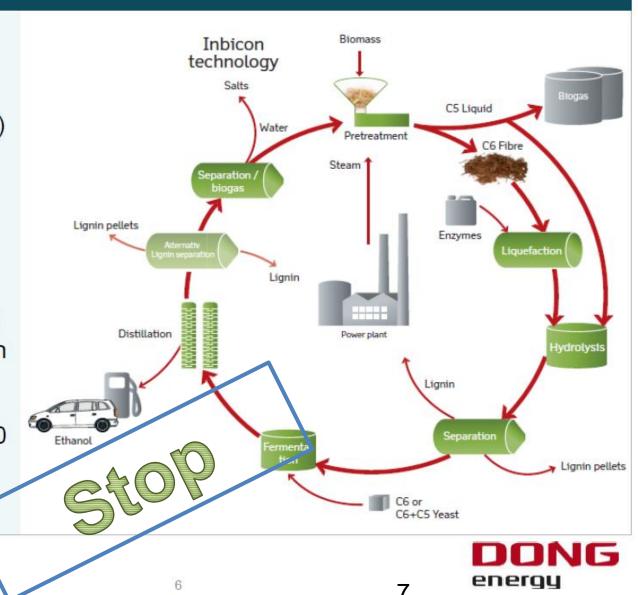
Product: Ethanol (4.300 ton/year), C₅ molasses, lignin for energy

Production process: Hydrothermal pre-treatment, enzymes from Novozymes, enzymatic hydrolysis and cofermentation of C_6 (phase 1); C5+C6 co-fermentation (phase 2). Stand-alone plant.

Demo

www.inbicon.com

Inbicon version 2 – C6+C5 mixed fermentation – proven in demo scale


Inbicon Concepts

Biomass
Water
Enzymes
Advanced yeast (GMO)

Bioethanol
Solid Biofuel
Vinasses

 Improving ethanol yield with 40% in comparison to Inbicon version 1

Typical yield of 280-300
 I etoh per ton of
 biomass dry matter

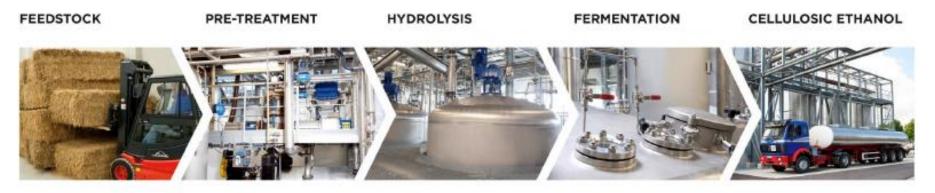
Clariant (ex- Sud-Chemie)

Local : Straubing (Germany)

Start-up: 2012

Raw material: cereal straw, agricultural waste

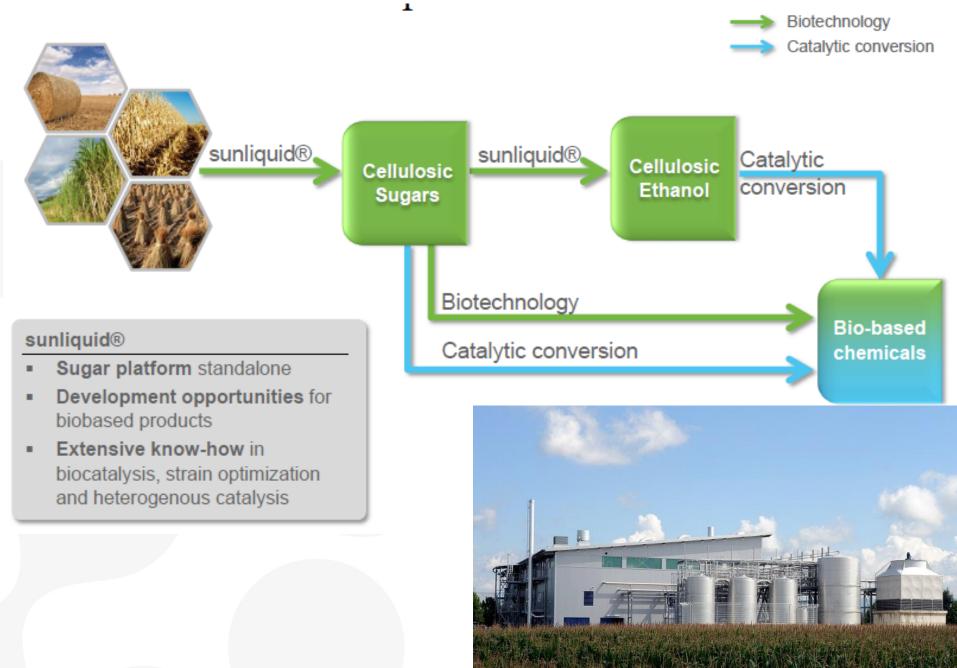
Product: Ethanol (1.000 ton/year)


Production process: steam explosion pre-treatment, enzymatic hydrolysis and co-fermentation of C_5 and C_6

Demo

www.sunliquid.com

Sunliquid[®] technology - STAGE 1


INTEGRATED ENZYME PRODUCTION

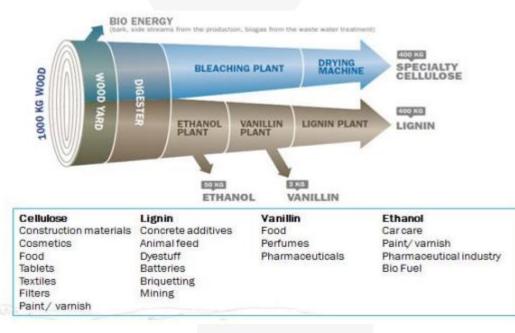
Key features and advantages

- Integrated enzyme production
- Fermentation of C6 and C5 sugars into ethanol
- Feedstock and process specific enzymes
- Energy saving ethanol separation technology

Sunliquid[®] technology – STAGE 2

Borregaard Industries AS

Local: Sarpsborg (Norway)


BALI[™] technology

Start-up: 2013

Raw material: 50 kg/h; cereal straws, sugarcane bagasse

Product: Ethanol (110 ton ethanol/year or 22° ton sugars C_5/C_6 /year; 200 ton/year specialized products of lignin)

Production process: Organosolv (BALI Technology); Biorefinery concept (chemical pretreatment, HE, Fermentation

www.borregard.com

LNEG

Demo

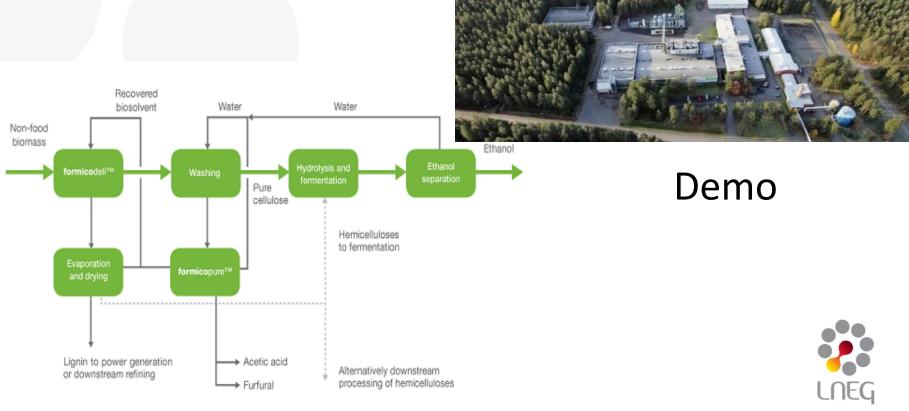
Abengoa Bioenergy (W2B)

Local: Babilafuente, Spain (2G Ethanol pilot plant retrofitting)

Start-up: 2011- 2015

Raw material: Organic fraction from MSW

Product: Ethanol (yield: 42% w/w)


Demo Plant

Chempolis Ltd.

Start-up: 2008Cheft points Ltd.Raw material: 25.000 ton/year strawsProduct: Ethanol (5.000 ton/ear), acetic ac., furfural, lignin for energyProduction process: organosolv pre-treatment, enzymatic hydrolysis and co-fermentation of C_5 and C_6

Local: Oulu (Finland)

ALLMICROALGAE

Local: Pataias-Leiria (Portugal)

Start-up: 2013 (ex-Algafuel)

Raw material: CO₂ (flue gas of cement plants), fertilizers, sunlight

Product : 1300 m³ of FBR for microalgae (for food and cosmetics); ~100 ton/year d.m. algae biomass

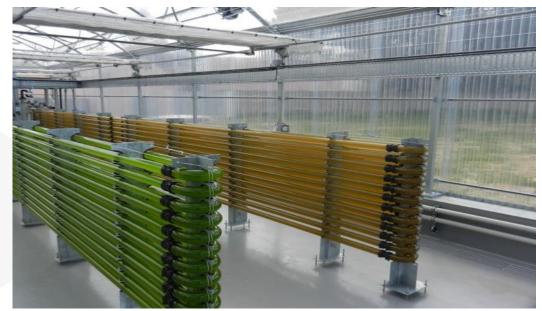
Production process: Microalgae cultivation, harvesting through microfiltration, pasteurization, spray-drying and final packaging

- Owned 100% the the Portuguese cement company SECIL.
- Since 2015 it becomes the <u>new world supplier of Allma</u> <u>Chlorella</u>
- Current target: delivery high quality algae ingredients for food, beverage and dietary supplement applications

Commercia

A4F (Algafuel)

Local: Lisboa (Portugal), LNEG CAMPUS.


Start-up: 2014

Raw material: CO2, fertilizers, sunlight

Product: 3 m³ of FBR for recombinant microalgae (for bioethanol)

Production process: Biochemistry

- Direct ethanol production from an engineered cyanobacteria
- In-situ ethanol recovery through pervaporation membranes
- Microalgae recovery for further processing; HTL for bio-oils, or directly spraydried for food, feed and pharmaceutical applications

www.a4f.pt

Pilot

1st Unit in Europe GMOcompliance for microalgae growth

BuggyPower S.L.

Local: Porto Santo, Madeira (Portugal)

Start-up: 2011

Raw material: CO₂, fertilizers, sunlight

Product: 60 ton/yr d.w. microalgae biomass (for food and cosmetics)

Production process: Biochemistry

1,100 m³ of closed photobioreactors with air-lift 8 m high and arranged in sequence to optimize solar capture and bacteriological control for a maximum quality of microalgae biomass

Demo

www.buggypower.eu

All-Gas Project (FP7 Algae Cluster)

Key technologies are:

- Low cost high rate algal ponds
- Low energy demand for harvesting (twostep process)
- Anaerobic digestors for biogas production from algae
- Water reuse at low energy demand during wastewater treatment with algae and flotation (0.15kWh/m3)

Local: Chiclana de la frontera, Spain

Start-up: 2014

Raw material: CO2 , fertilizers, sunlight

Product : up to 40 kg/day d.w.microalgae biomass converted into biomethane (5 kg/day)

Production process: Microalgae cultivation in open ponds, harvesting + anaerobic digestion to biogas and upgrading to CH4

Demo

InteSusAl Project (FP7 Algae Cluster)

PBR MICROALGAE SYSTEM:

- 1 Ha site made up 4 x 15 m³ tubular photobioreactors, 1 x 200 m³ open pond raceway and 3 x 1 m³ heterotrophic fermentation systems
- One further 1m³ heterotrophic fermentation systems (Heterotrophic pilot line #1) was retained at CPI,
 Middleborough,
 United Kingdom, to be operated in parallel with the 3 x 1m³ heterotrophic fermentation systems

Local: Olhão, Portugal

Start-up: 2015

Raw material: CO₂, fertilizers, sunlight

Product : ~110 kg/day d.w.micro-algae biomass; main product – bio-diesel; Other products to be identified
Production process: Microalgae cultivation PBR (either phototrophically or heteretrophically), harvesting.

Demo

BIOFAT Project (FP7 Algae Cluster)

Local: Pataias, Portugal and Camporosso, Italy

Start-up: 2013 (Pataias), 2015 (Camporosso)

Raw material: CO2, fertilizers, sunlight

Product : ~34kg/day (Pataias), ~20 kg/day (Camporosso) d.w.microalgae biomass; main product – algal biomass; In future: *Nannochoropsis* oil into biodiesel

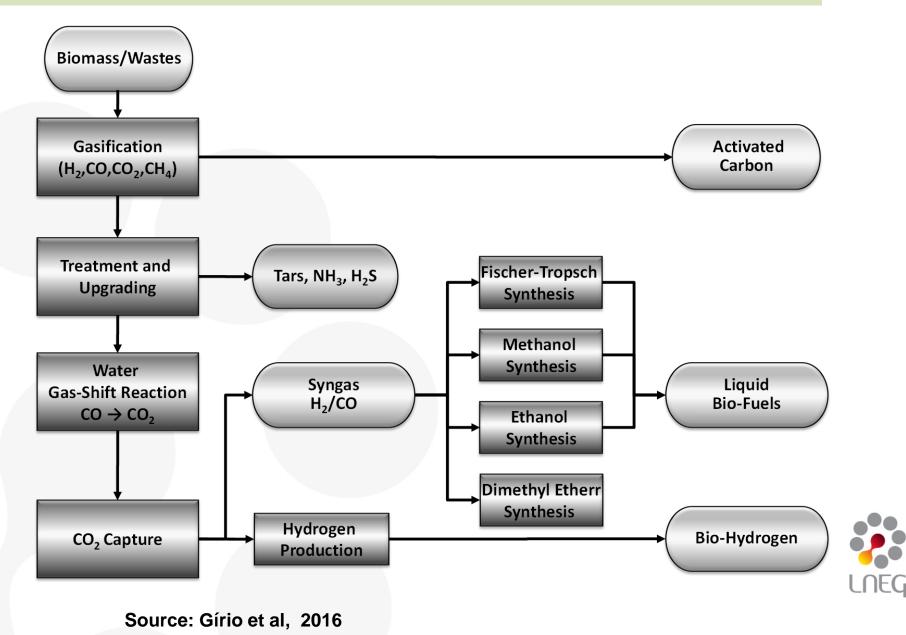
Production process: Microalgae cultivation and harvesting.

Pataias, PT

Camporosso, IT

Demo

BIOFAT TECHNOLOGY in Pataias:


- Inoculum production in GWP
- Production in TPBRs and
- Production/starv ation in CRWs
- Harvesting includes
 pretreatment
 with filtration
 and
 centrifugation

Current Status of Advanced Biorefineries in Europe using Thermochemical Processing of Biomass

BIOMASS	Gasification	Syngas (CO, H ₂)	Fisher-Tropsch (FT) synthesis	Synthetic Diesel and Biokerosene
Biomethane				
BIOMASS	Gasification	Syngas (CO, H ₂)	Upgrading	Biomethane (CH ₄)
Methanol/DME				
BIOMASS	Gasification	Syngas (CO, H ₂)	Chemical Synthesis	BioMethanol/DME
Fuel additives, H2				
BIOMASS	Pyrolysis	Fractionation)	Liquid phase processing	Fuel aditives, H2,
				LNEG

Gasification Processes & Products

UPM

Local: Lappeenranta (Finland)

Start-up: Jan 2015

Raw material: Tall oil (by-product from the pulp and paper industry)

Product: 100.000 ton diesel BtL drop-in

Production process: gasification and Fischer-Tropsch reaction followed by hydrotreatment provided by Haldor Topsoe.

- Co-located with a pulp and paper mil.
- ➤ CAPEX of 175 Mio€
- Key technology is the Hydrotreatment

Commercial

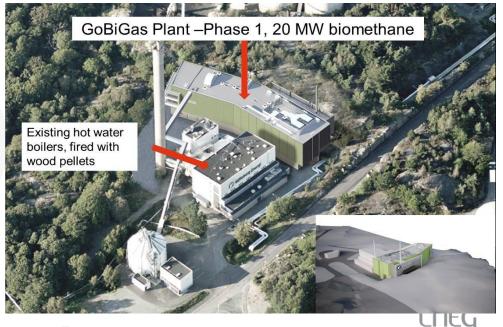
www.upmbiofuels.com

Goteborg Energi (GoBiGas Phase I)

Local: Gothenburg (Sweden). Done by Valmet under a licence from Repotec,

Start-up: 2013

Raw material: wood pellets (6.8 ton/h at 5.5% moisture). It is currently shifting to forest residues (8.9 ton/h at 20% moisture);


Product: SNG (biomethane, 11.200 ton/year; ~20MW biomethane), heat for district heating.

Production process: gasification and methanation in fixed bed. Includes tar removal via scrubbing and active carbon filters. Acid gas removal technology in in-place.

PHASE 2

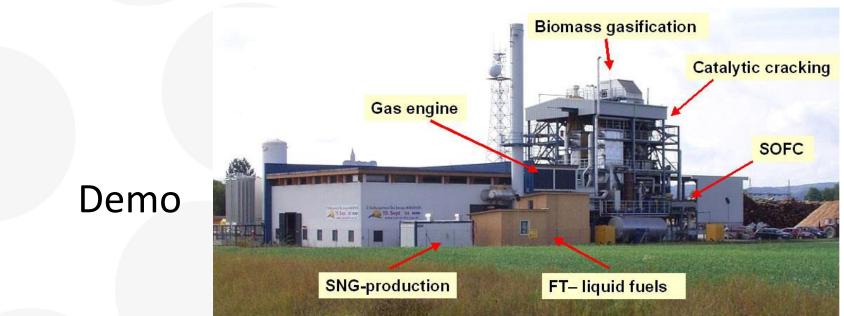
Biomass for ~200 MW_{SNG} / SNG (on hold)

- Biomethane requires wood methanation of the cleaned syngas followed by CO2 removal
- Very exothermic and very selective
- The process is driven to high CO conversion

Demo

www.goteborgenergi.se

SNG Biomassekraftwerk, Güssing


Local: Güssing, Austria – Demo plant

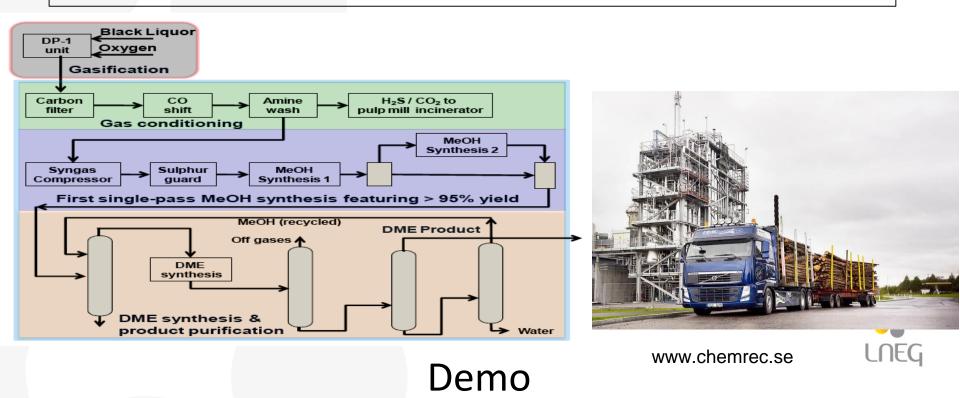
Start-up: 2009

Raw material: 350 Nm³/h of syngas (from wood chips)

Product: 576 ton/year; 100 Nm3/h of SNG

Production process: Syngas from the existing gasifier in Güssing is purified before being introduced to the catalytic reactor for conversion to methane, which operates at a temperature between 300 and 360° C and a pressure range from 1 to 10 bar.

Chemrec AB (current owner: Lulea Technology Univ.)


Local: Pitea (Sweden)

Start-up: Nov 2011

Raw material: 20 ton/day kraft black liquor (from pulp unit). Can also use sulphite liquors.

```
Product: Bio-DME (1.800 ton/year)
```

Production process: Chemrec gasification (~3MPa), syngas purification, chemical synthesis of bio-methanol, chemical conversion to DME.

Local: Farmsum (Netherlands)

Start-up: 2009

Raw material: Crude glycerine, biogas (CO₂)

Product: Bio-methanol (200.000 ton/year)

Production process: Purification of glycerine, conversion into synthesis gas, bio-

methanol synthesis (with Co catalyst, at 6-10 Mpa and about 260°C) followed by distillation (water is a by-product)

- Exothermic conversion
- Very selective

➤ ~80% syngas energy is transfered to methanol (+95% C conversion)

PLANNED UNIT (in stand-by):

- 413,000 ton of Bio-metanol from 1.5 Mton/yr of imported forest residues
- Pretreatment by torrefaction, gasification, syngas purification, chemical synthesis of biomethanol

Commercial

www.biomcn.nl

Local: Swindon, UK (a partnership between National Grid Gas Distribution, Advanced Plasma Power, Progressive Energy and Carbotech)

Start-up: 2016

Raw material: 0.4 ton/day of dried Refuse Derived Fuel (RDF) and biomass feedstocks

Product: Bio-SNG 0.050 MW (biomethane)

Production process: two stage gasification process using APPS Gasplasma TM technology.(<u>fluidized bed gasifier at atmospheric pressure coupled with a plasma converter</u>).

- The plasma stage removes tars leaving syngas composition with mainly CO and H2, followed by catalytic methanation
- CO2 is removed using PSA unit to produce Bio-SNG

Pilot

Pyrolysis Technologies

- ★ Fast pyrolysis → gasification or co-gasification with e.g. black liquor→synthesis to biofuel product (KIT, LTU)
 ❖ Bio-oils with low quality due to high water content (~25%); unstable
- ★ Fast pyrolysis → (stabilization) → co-feed to refinery Fluid Catalytic Cracking (FCC) (UOP, PetroBras; Repsol, Grace).
 ♦ Still under tests.
- ★ Fast pyrolysis → stabilization → Hydrodexygenation and Hydrocracking (BTG Biomass Technology Group BV (BTG), US Department of Energy - Pacific Nortwest National Laboratory (PNNL)).
- ★ Catalytic pyrolysis → Hydrodexygenation and Hydrocracking (Anellotech, Center for Research & Technology Hellas (CERTH)).
- ★ Hydropyrolysis (hydrogen + catalysts) → Hydrodesulphurization + Dearomatization (Gas Technology Institute (GTI)/ CRI Catalyst Company (CRI)).

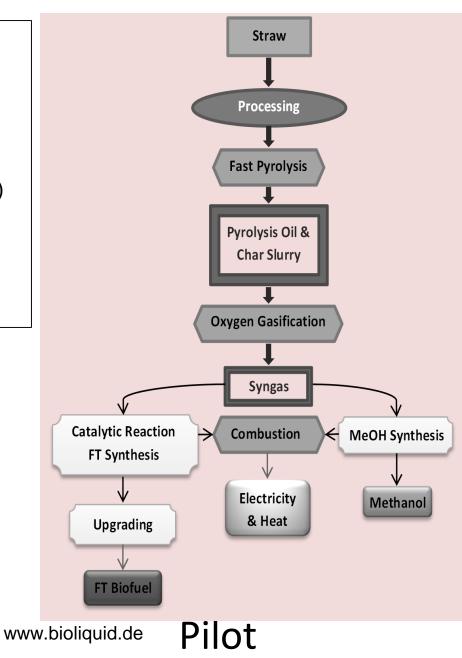
BIOLIQUID (Karlshrue Institute of Technology)

Local: Karlsruhe, Baden-Wuerttenberg, Germany

Start-up: 2014 (**pyrolysis**+gasification+synthetic gasoline synthesis)

Raw material: 500 kg/h straw

Product: 5 ML/yr (methanol), Gasification (5 MWt)
+ DME/gasoline synthesis


Production process: Fast pyrolysis + Entrained Flow Gasification (w/O2 at 4-8MPa) with cooling screen for SYNGAS

DME production:

- Methanol dehydration in presence of catalyst (eg, sílica-alumina)
- Slightly exothermic
- DME is stored under liquid state at 0.5MPa and RT, (like LPG)
- Alternatively, DME can be produced through direct synthesis using dual-catalyst system (metanol synthesis and dehydratation in one pot unit)

Synthetic Gasoline (via DME)

This DME can be blended into today's commercial gasoline grades

Empyro, NL

Local: Hengelo, The Netherlands

Start-up: 2015

Raw material: 120 ton/day clean wood residues

Product: 77 ton/day crude pyrolysis oils (~8MW)

Production process: BTG-BtL pyrolysis process

BTG-BtL process:

A rotating cone reactor integrated in a circulating sand system composed by:

- Riser
- Fluidised bed char combustor
- Pyrolysis reactor
- Down-comer
- > Oil is the main product
- Non-condensable pyrolysis gases are combusted to generate additional steam and power
- Excess heat is used for drying the feedstock

Demo/Commercial

Concluding Remarks

Biorefineries concept means more eficiente use of resources and by-streams
 Key challenges in near future are:

- sustainable supply of biomass
- more eficiente biomass deconstruction
- multi-products from the use of diferente LCF
- Cluster-based biorefineries shall be more competitive

□ Forestry Industry has specific advantages to be in the front line of Biorefineries Development

Concluding Remarks

Biorefineries concept means more eficiente use of resources and by-streams
 Key challenges in near future are:

- sustainable supply of biomass
- more eficiente biomass deconstruction
- multi-products from the use of diferente LCF
- Cluster-based biorefineries shall be more competitive

Forestry Industry has specific advantages to be in the front line of Biorefineries Development
 There are already numerous industrial Biorefinery projects for commercial plants of advanced biofuels in Europe, in particular:

- **Cellulosic bioethanol**, the first worldwide commercial unit BioChemtex, (Crescentino, Italy) is working since 2013.
- **Bio-methanol** from crude glycerine (residue from conventional process of biodiesel FAME production), since 2009 there is a commercial unit Bio-MCN operating in the Netherlands.
- Biodiesel HVO (hydrogenated vegetable oil) in Finland (Neste Oil), they have environmental advantages and superior techniques to conventional biodiesel FAME type

Concluding Remarks

Biorefineries concept means more eficiente use of resources and by-streams
 Key challenges in near future are:

- sustainable supply of biomass
- more eficiente biomass deconstruction
- multi-products from the use of diferente LCF
- Cluster-based biorefineries shall be more competitive
- Forestry Industry has specific advantages to be in the front line of Biorefineries Development
 There are already numerous industrial Biorefinery projects for commercial plants of advanced biofuels in Europe, in particular:
 - **Cellulosic bioethanol**, the first worldwide commercial unit BioChemtex, (Crescentino, Italy) is working since 2013.
 - **Bio-methanol** from crude glycerine (residue from conventional process of biodiesel FAME production), since 2009 there is a commercial unit Bio-MCN operating in the Netherlands.
 - **Biodiesel HVO** (hydrogenated vegetable oil) in Finland (Neste Oil), they have environmental advantages and superior techniques to conventional biodiesel FAME type

□ The main problems of today's advanced biofuels projects in Europe are:

- Competitiveness with either gasoline/diesel or with 1G.
- Price, logistics and availability of large-scale biomass supply.

www.lneg.pt

Thanks

Contact: francisco.girio@lneg.pt

