

4th SMIBIO WORKSHOP

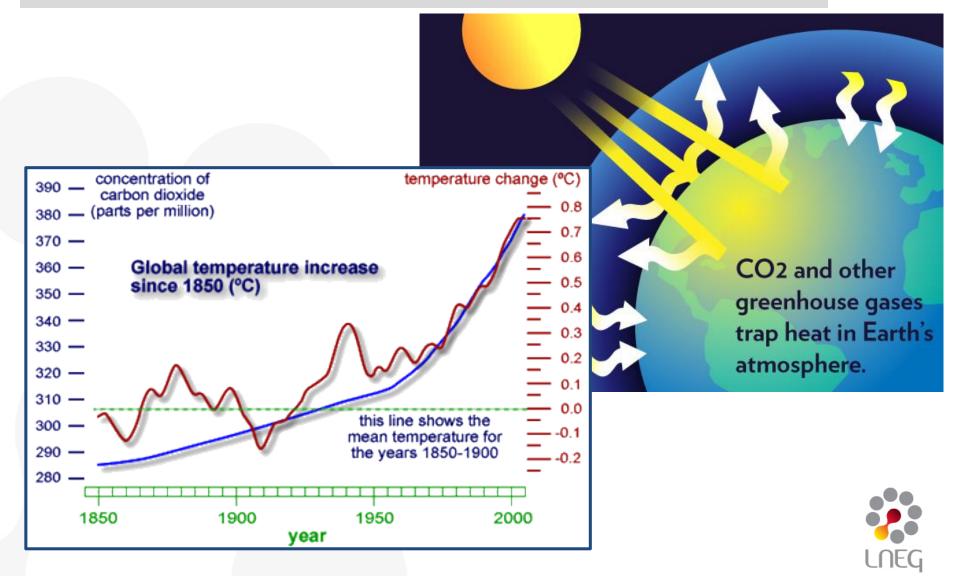
Small-scale biorefineries for bio-based products and biofuels production in Portugal

Tiago Lopes, PhD Bioenergy Unit, National Laboratory of Energy and Geology (LNEG), Portugal

Straubing, July 4th 2017

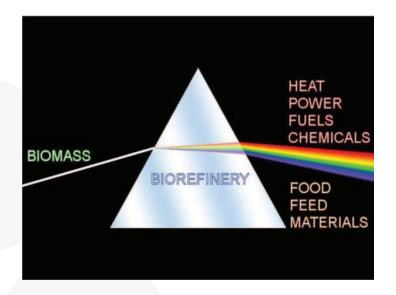
Introduction

CLIMATE CHANGE



Norway; Source: National Geographic

Introduction


GLOBAL WARMING

Biorefineries

WHAT IS A BIOREFINERY?

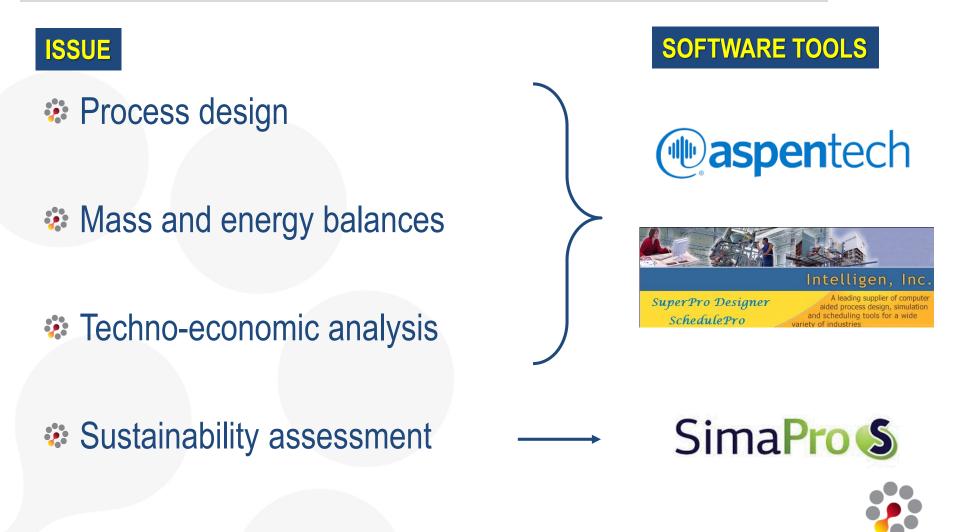
"Biorefinery is the sustainable processing of biomass into a spectrum of marketable products and energy"

Source: IEA Bioenergy Task 42

Biorefineries

WHY SMALL-SCALE?

- Reduction of transportation costs of raw materials and intermediate products
- All-year supply of plant raw material within a suitable radius around the farm (up to 100 km)
- \therefore Decentralized location \rightarrow stable regional sales market
- Industry and agriculture get linked by this process
- Refining "on the farm" allows very fast processing and can deliver high quality preproducts to decentralized biorefinery plants
- Residual material after refining (e.g. molasses, digestate) can be used as animal feed or source of energy, and soil fertilizer



Biorefineries

HOW TO ASSESS ITS ECONOMIC AND ENVIRONMENTAL VIABILITY?

4th SMIBIO WORKSHOP – Straubing, July 4th 2018

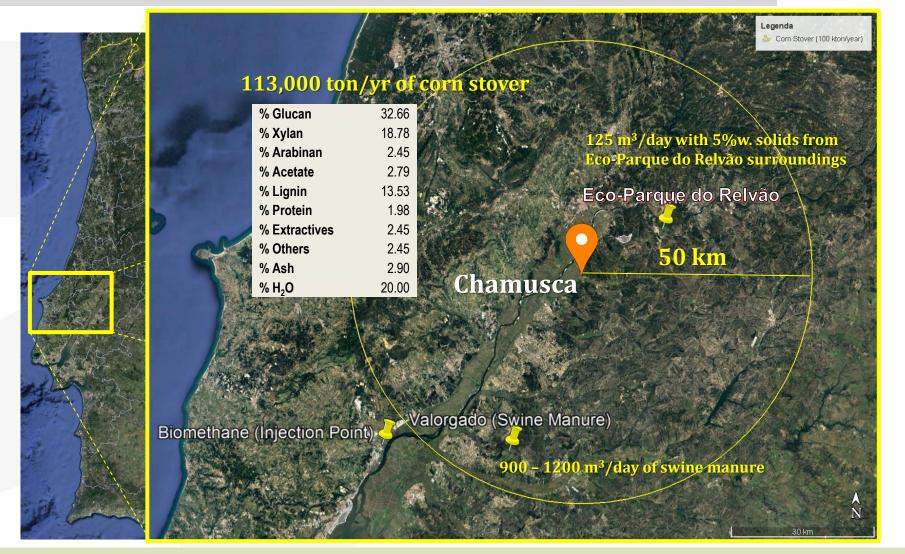
Biorefinery conceptual design and selection of business case studies

BIOREFINERY FEEDSTOCKS & PRODUCTS – PORTUGAL CASE STUDY

Feedstock:

- Corn Stover (dry biomass)
- Swine Manure (wet biomass)

Biorefinery products:


- Ethanol/Isobutene
- Lignin and Biogas to CHP
- Bioproducts (oligosaccharides)

SMIBIO

Biorefinery conceptual design and selection of business case studies

BIOREFINERY LOCATION

SMİBİO

Biorefinery conceptual design and selection of business case studies

HEURISTIC ANALYSIS Selection of 2 out of 4 scenarios

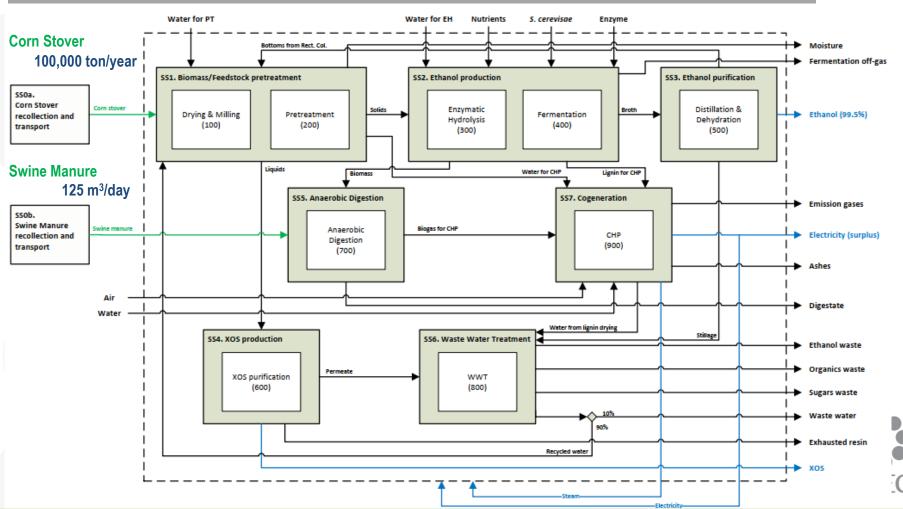
SCENARIO 1 Ethanol + Xylooligosaccharides (XOS) + CHP

XOS to be used as food or feed additive (1% wt.); e.g. prebiotic; World costumers

SCENARIO 2 Isobutene + XOS + CHP

Isobutene production from direct fermentation of C6 sugars; Industrial costumers

Process simulation of scenario #1



ASPEN PLUS

Mass & Energy balances

SCENARIO 1

Ethanol + XOS + CHP

ASPEN PLUS Economic analysis

SCENARIO 1 Ethanol + XOS + CHP

Plant capacity: 100 kton corn stover per year

Fixed Capital Investment	78.9 mUSD
Total costs	mUSD/yr
Raw Materials	8.34
Utilities	1.04
Maintenance	5.49
Labor	0.11
Fixed & General	3.36
Overhead	2.92
Capital Depreciation	5.35
Other Costs	0.0
Total	26.61

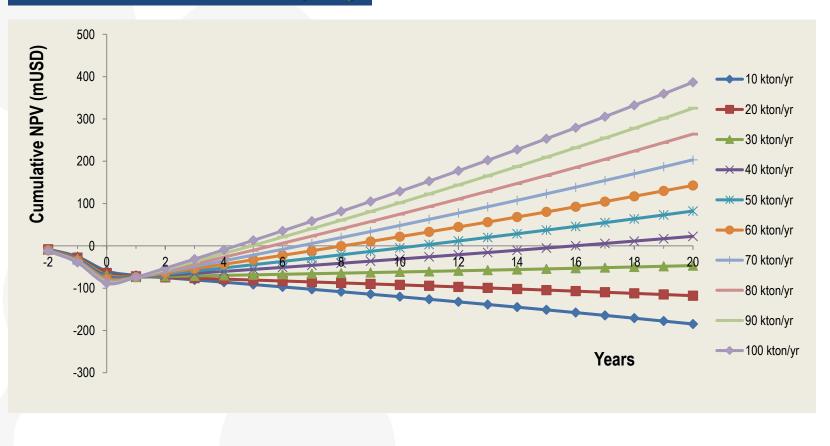
	Raw materials	USD/ton	mUSD/year			
	Corn Stover	52.10	5.21			
	Swine Manure	20.26	0.94 0.07 2.11			
	Process Water	0.36				
	Enzyme	3446.50				
Overheue	Yeast	n.d.	n.d.			
Utilities	mUSD/year					
Cooling water	0.33					
LP Steam	0.08	ance	Utilities 3,9%			
Mid Steam	0.00	%				
HP Steam	0.63					
Electricity	0.00		LNEG			

SMIBI

ASPEN PLUS Economic analysis

SCENARIO 1 Ethanol + XOS + CHP

NPV for 100,000 ton/year 384.5 mUSD (20 years plant lifetime)



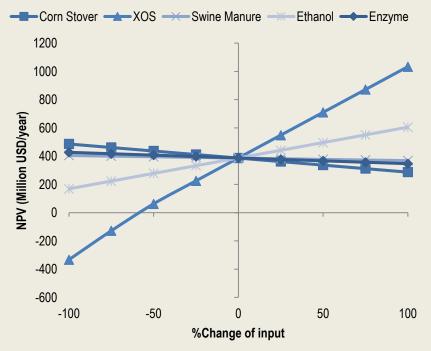
SMÎBÎ

ASPEN PLUS Economic analysis

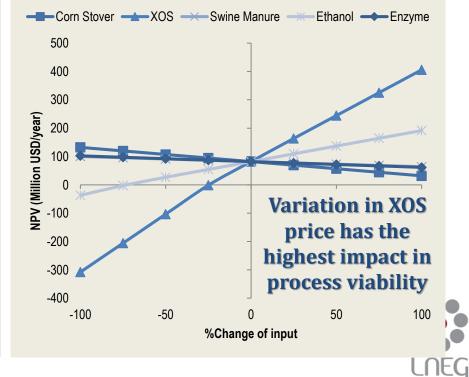
SCENARIO 1 Ethanol + XOS + CHP

Net Present Value vs. Plant Capacity

LNEG


SMİBİO

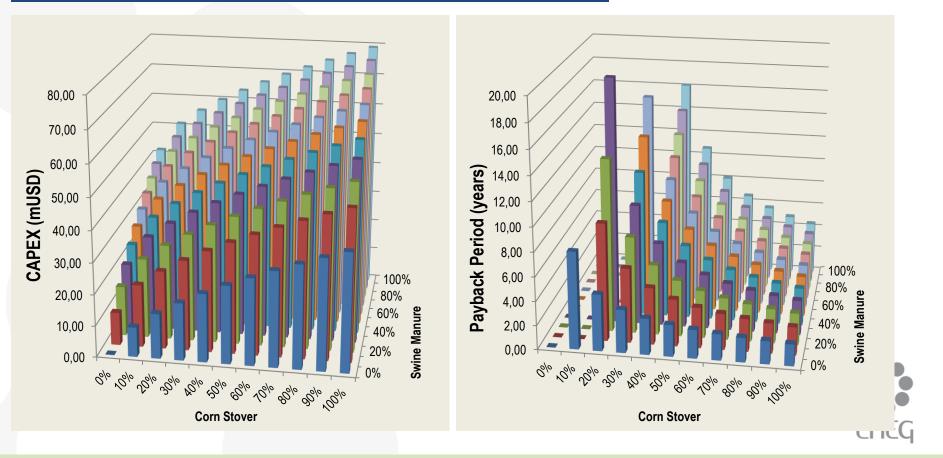
ASPEN PLUS Economic analysis


SCENARIO 1 Ethanol + XOS + CHP

Net Present Value vs. Price of Raw Materials/Products

100,000 ton corn stover/year

50,000 ton corn stover/year



4th SMIBIO WORKSHOP – Straubing, July 4th 2018

ASPEN PLUS Economic analysis

SCENARIO 1 Ethanol + XOS + CHP

Corn Stover (100,000 ton/yr) vs. Swine Manure (46,480 ton/yr)

SMÎBÎ

ASPEN PLUS Economic analysis

SCENARIO 1 Ethanol + XOS + CHP

Corn Stover (100,000 ton/yr) vs. Swine Manure (46,480 ton/yr)

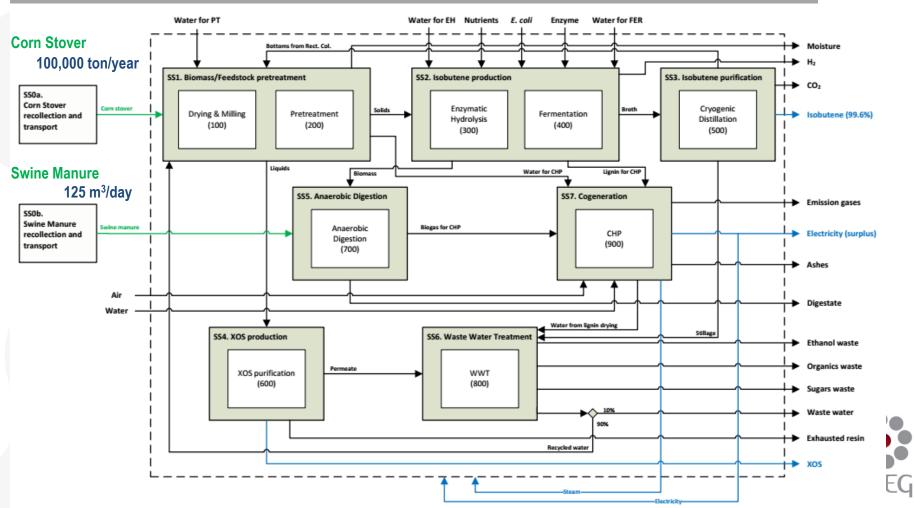
MP steam		Corn Stover (kton/year)											
	(ton/h)	0	10	20	30	40	50	60	70	80	90	100	
	0	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.51	4.01	4.51	5.01	
	4.65	0.23	0.73	1.23	1.74	2.24	2.74	3.24	3.74	4.24	4.74	5.24	
ar)	9.30	0.47	0.97	1.47	1.97	2.47	2.97	3.47	3.97	4.47	4.97	5.47	
n/ye	13.95	0.70	1.20	1.70	2.20	2.70	3.20	3.70	4.20	4.70	5.21	5.71	
(kto	18.59	0.93	1.43	1.93	2.43	2.93	3.44	3.94	4.44	4.94	5.44	5.94	
ure	23.24	1.16	1.66	2.17	2.67	3.17	3.67	4.17	4.67	5.17	5.67	6.17	
Swine Manure (kton/year)	27.89	1.40	1.90	2.40	2.90	3.40	3.90	4.40	4.90	5.40	5.90	6.40	
ine	32.54	1.63	2.13	2.63	3.13	3.63	4.13	4.63	5.14	5.64	6.14	6.64	
Sw	37.19	1.86	2.36	2.86	3.36	3.87	4.37	4.87	5.37	5.87	6.37	6.87	
	41.83	2.10	2.60	3.10	3.60	4.10	4.60	5.10	5.60	6.10	6.60	7.10	
	46.48	2.33	2.83	3.33	3.83	4.33	4.83	5.33	5.83	6.33	6.84	7.34	

→ 3 ton/h of steam at 7 bar available at Eco-Parque do Relvão

TECHNO-ECONOMIC ANALYSIS Main Conclusions

SCENARIO 1 Ethanol + XOS + CHP

- Ethanol production from corn stover is economically viable for plant capacity higher than 50,000 ton/year of lignocellulosic feedstock
- XOS market price variation has the highest impact on process viability;
 Process non-viable if XOS price is reduced in 50% for 100 kton/year and if
 reduced in 25% for 50 kton/year
- Process is still viable if wet biomass is not used; The use of swine manure increases the CAPEX and produces surplus of electricity; No swine manure leads to electricity deficit.



ASPEN PLUS

Mass & Energy balances

SCENARIO 2

Isobutene + XOS + CHP

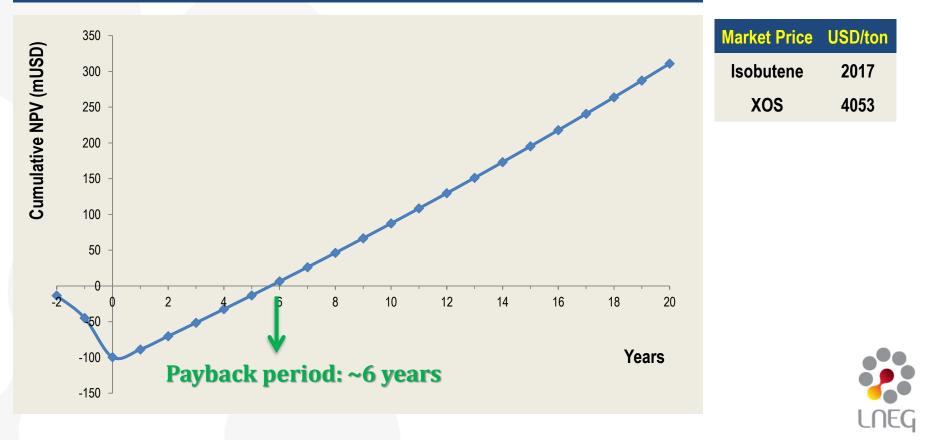
^{4&}lt;sup>th</sup> SMIBIO WORKSHOP – Straubing, July 4th 2018

ASPEN PLUS Economic analysis

SCENARIO 2 Isobutene + XOS + CHP

Plant capacity: 100 kton corn stover per year

Fixed Capital Investment 89.5 mUSE						
Total costs	mUSD/yr					
Raw Materials	8.41					
Utilities	5.90					
Maintenance	6.17					
Labor	0.11					
Fixed & General	3.78					
Overhead	3.28					
Capital Depreciation	6.02					
Other Costs	0.00					
Total	33.68					


	Raw materials	USD/ton	mUSD/year		
	Corn Stover	52.10	5.21		
	Swine Manure	20.26	0.94		
	Process Water	0.36	0.14 2.11		
	Enzyme	3446.50			
Ov	Bacteria (<i>E. coli</i>)	Bacteria (<i>E. coli</i>) n.d.			
Utilities	mUSD/year	Utilities			
Cooling water	0.33	17,5%			
LP Steam	0.08				
Mid Steam	0.00				
HP Steam	0.63				
Electricity	0.00		LINEG		

SMIB

ASPEN PLUS Economic analysis

SCENARIO 2 Isobutene + XOS + CHP

NPV for 100,000 ton/year 311.0 mUSD (20 years plant lifetime)

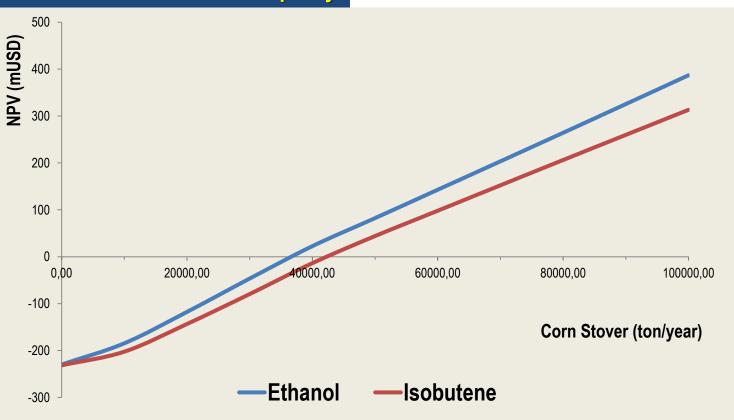
SMÎBÎ

ASPEN PLUS Economic analysis

SCENARIO 2 Isobutene + XOS + CHP

Corn Stover (100,000 ton/yr) vs. Swine Manure (46,480 ton/yr)

MP steam		Corn Stover (kton/year)										
	(ton/h)	0	10	20	30	40	50	60	70	80	90	100
	0	0.00	4.05	8.09	12.14	16.18	20.23	24.27	28.32	32.36	36.41	40.45
	4.65	1.88	5.93	9.97	14.02	18.06	22.11	26.15	30.20	34.24	38.29	42.33
ar)	9.30	3.76	7.81	11.85	15.90	19.94	23.99	28.03	32.08	36.12	40.17	44.21
Manure (kton/year)	13.95	5.64	9.69	13.73	17.78	21.82	25.87	29.91	33.96	38.00	42.05	46.09
(kto	18.59	7.52	11.57	15.61	19.66	23.70	27.75	31.79	35.84	39.88	43.93	47.97
nre	23.24	9.40	13.45	17.49	21.54	25.58	29.63	33.67	37.72	41.76	45.81	49.85
Man	27.89	11.28	15.33	19.37	23.42	27.46	31.51	35.55	39.60	43.64	47.69	51.73
Swine	32.54	13.16	17.21	21.25	25.30	29.34	33.39	37.43	41.48	45.52	49.57	53.61
Sw	37.19	15.04	19.09	23.13	27.18	31.22	35.27	39.31	43.36	47.40	51.45	55.50
	41.83	16.92	20.97	25.01	29.06	33.10	37.15	41.19	45.24	49.29	53.33	57.38
	46.48	18.80	22.85	26.89	30.94	34.98	39.03	43.08	47.12	51.17	55.21	59.26
		_										



→ 3 ton/h of steam at 7 bar available at Eco-Parque do Relvão

ASPEN PLUS Economic analysis

SCENARIO 1 vs. SCENARIO 2

Net Present Value vs. Plant Capacity

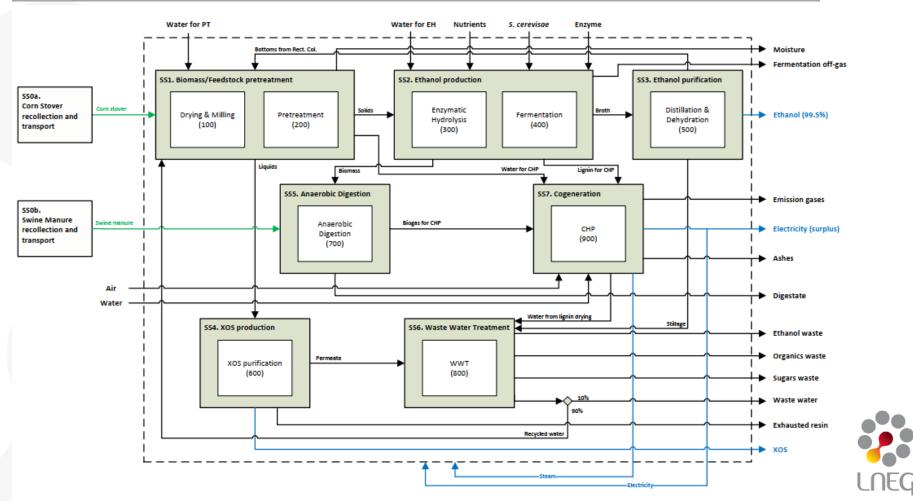
SMİBİ

TECHNO-ECONOMIC ANALYSIS Main Conclusions

SCENARIO 2 Isobutene + XOS + CHP

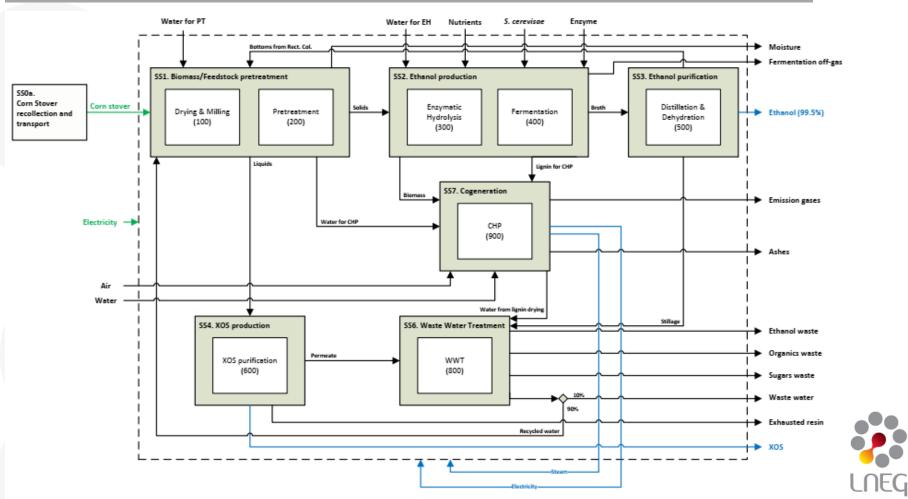
- Isobutene production from corn stover is economically viable for plant capacity higher than 70,000 ton/year of lignocellulosic feedstock
- Higher CAPEX and OPEX than Scenario 1 due to the need of cryogenic distillation for isobutene purification; Higher steam demand due to the need of sterilization of streams before fermentation (with *E. coli*)
- The use of swine manure has the **same impact** as in Scenario 1
- Scenario 1 leads to payback period lower than Scenario 2 for any viable plant capacity

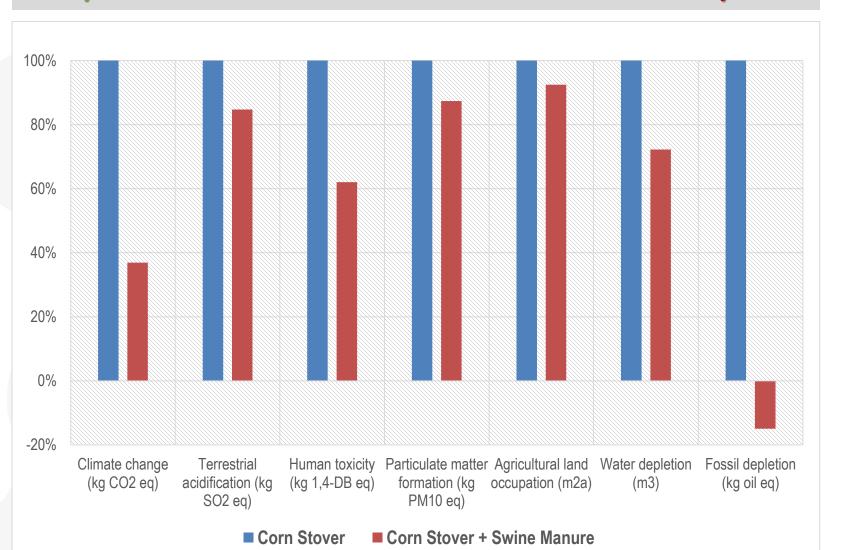
Life Cycle Assessment


Goal and Scope:

- Assess the environmental impacts of producing biofuels/bioproducts under the developed scenarios for each country
- Functional Unit: 1 kg of lignocellulosic feedstock
- System Boundaries: cradle-to-gate (feedstock as residues, only its transport was considered)
- Subsystems: To simplify the process and evaluate the impact of each system
- LCI: Data obtained from Aspen Plus simulations
- Databases: Ecoinvent v3 (SimaPro), literature data
- Methods for LCA: ReCiPe Midpoint (H)

Life Cycle Assessment Scenario 1 : Ethanol + XOS + CHP

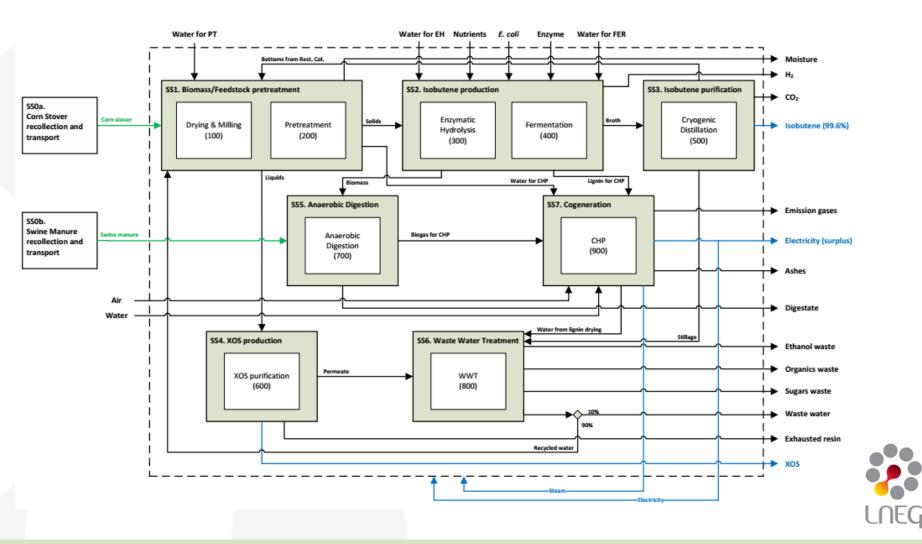

Corn Stover + Swine Manure


SMÎRÎ

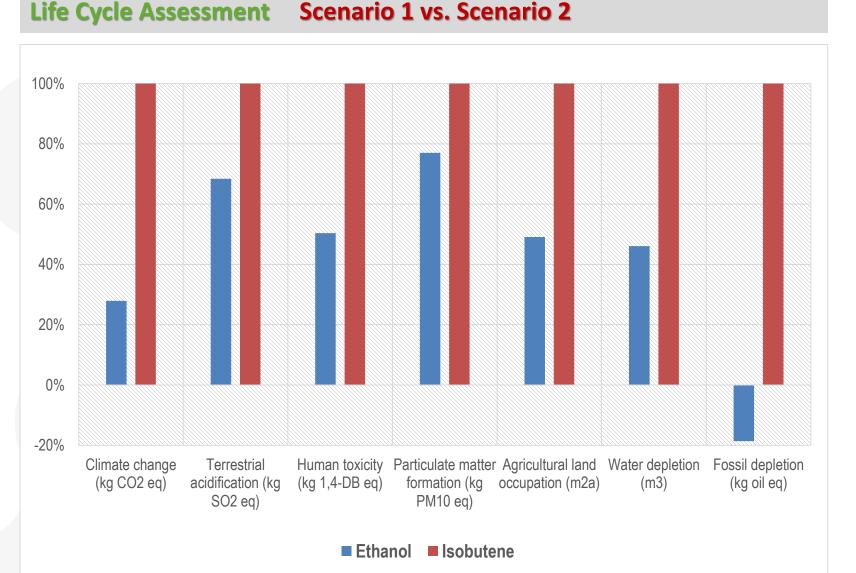
Life Cycle Assessment Scenario 1 : Ethanol + XOS + CHP

Without Swine Manure

SMÎRÎ


Life Cycle Assessment Corn Stover + Swine Manure vs. CS only

4th SMIBIO WORKSHOP – Straubing, July 4th 2018


LNEG

SMIB

Life Cycle Assessment Scenario 2 : Isobutene + XOS + CHP

SMĬBĬ

4th SMIBIO WORKSHOP – Straubing, July 4th 2018

LNEG

SM

Life Cycle Assessment Scenario 1 vs. Scenario 2

Impact category	Ethanol (corn stover) Per kg of lignoce	Isobutene (corn stover) ulosic feedstock		
GWP (kg CO ₂ eq)	0.6296	2.2571		
Agricultural land occupation (m ² a)	1.3019	2.6515		
Water depletion (m ³)	0.0090	0.0195		
Fossil depletion (kg oil eq)	-0.0405	0.2174		

Values for scenarios 1 and 2 using 100,000 ton/year of corn stover and 46,485 ton/year of swine manure

SMIBI

SMIBIO Process integration and optimization of both platforms Life Cycle Assessment **Comparison with fossil fuels** GHG emissions (kg_{CO2eq}/MJ_{fuel}) Scenario 1: Ethanol + XOS (corn stover and swine manure) **RED II** 0,08380 data for 0,08062 gasoline -4% -38% 0,05195 Gasoline (RED II) E100 (econ. allocation) E10 (econ. allocation) LNEG

Life Cycle Assessment Main Conclusions

- In scenario 1, SS2 (Ethanol production) has the highest contribution for climate change and agricultural land occupation; This is due to the impacts related to yeast production
- The use of swine manure has a positive impact due to electricity surplus, leading to a more sustainable process
- Scenario 1 (Ethanol) is more environmentally sustainable than Scenario 2 (Isobutene); This is due to the higher demands of electricity and steam, and the impact related to the use of *E. coli*
- Ethanol from corn stover (E100), under this biorefinery scenario where XOS is also produced, has less GWP than gasoline from oil (RED II) if an economic allocation is considered

www.lneg.pt

Thank you for your attention

tiago.lopes@lneg.pt

