

DFVFI OPMFNT OF**FLEXIBLE** SMALL-SCALE INTEGRATED **BIOREFINERIES** TO PRODUCE AN OPTIMAL RANGE OF BIOPRODUCTS FROM A VARIETY OF RURAL AGRICULTURAL AND AGRO-INDUSTRIAL RESIDUES/WASTES WITH A MINIMUM CONSUMPTION OF FOSSIL **ENERGY**

Francisco Gírio

SMIBIO Coordinator Head of Bioenergy Unit LNEG, Portugal

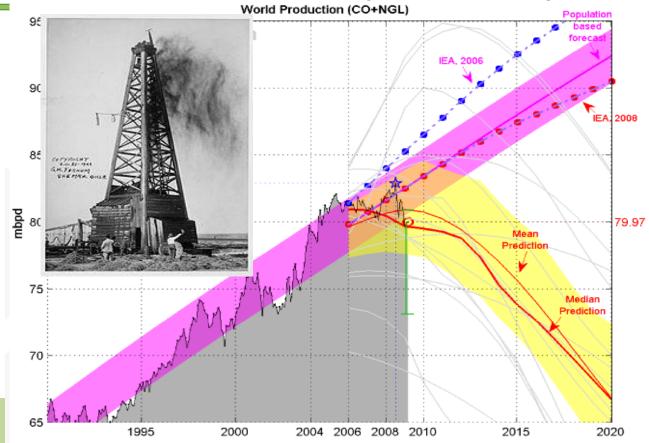
SMall-scale Integrated BIOrefineries

INDEX

- 1. SETTING THE SCENE
- 2. BIOREFINERIES KEY-CHALLENGES FOR NEXT DECADE
- 3. SMIBIO PROJECT: GOALS AND CONCEPT
- 4. PT BUSINESS CASE STUDY: Preliminary Results

1. SETTING THE SCENE

Did crude oil reach a production peak?

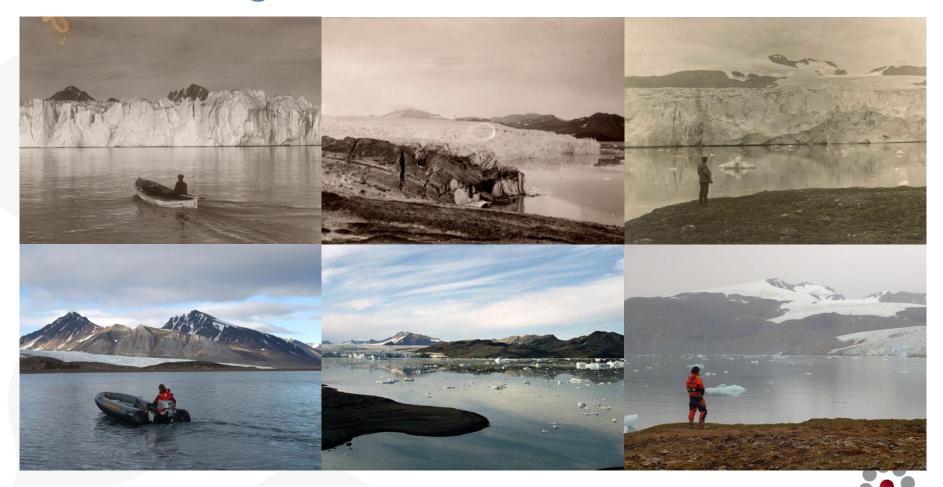

23.10.2003

Break News: Saudi Arabia sees End of Oil Age coming and opens valves on the carbon bubble

January 22, 2015 ("EnergyPost")

However,
This is not the point...!

World oil production (EIA Monthly) for crude oil + NGL. The median forecast is calculated from 15 models that are predicting a peak before 2020 (Bakhtiari, Smith, Staniford, Loglets, Shock model, GBM, ASPO-[70,58,45], Robelius Low/High, HSM, Duncan&Youngquist). 95% of the predictions sees a production peak between 2008 and 2010 at 77.5 - 85.0 mbpd (The 95% forecast variability area in yellow is computed using a bootstrap technique).


The magenta area is the 95% confidence interval for the population-based model.

The point is (I)....

Climate Change

Norway

Source: National Geographic

1. SETTING THE SCENE

The point is (II)....

Global Warming concentration of temperature change (°C) 390 carbon dioxide (parts per million) 370 -Global temperature increase since 1850 (°C) 360 **—** CO₂ and other 350 greenhouse gases 340 -0.3 trap heat in Earth's 330 atmosphere. 320 -310 -0.0 this line shows the 300 mean temperature for

the years 1850-1900

1950

year

290

280 -

1850

1900

2000

Biorefinery Concept

Fuels and Energy

Petroleum

Chemistry

Fuels and Energy

- Bioethanol
- Biodiesel, Biogas
- Hydrogen

Biomass

Material Utilisation, Chemistry - Basic and Fine

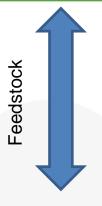
- Basic and Fine Chemicals
- Biopolymers and Bioplastics

<u>Refinery</u> <u>Biorefinery</u>

Bio-based products:

- Bio-based materials
- Bio-based chemicals
- Biofuels
- Bioenergy

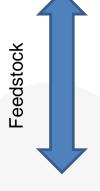
Similar to an oil refinery, a biorefinery is an industrial plant that converts Renewable Resources - BIOMASS (instead of fossil petroleum) into bio-based products, fuels and energy.



2. BIOREFINERIES KEY-CHALLENGES FOR NEXT DECADE

Non-food biomass supply chain: Sustainable feedstock (at large quantities?)

Competition for lignocellulosic biomass uses


Lignocellulosic Biomass as a world commodity

2. BIOREFINERIES KEY-CHALLENGES FOR NEXT DECADE

Technology

Non-food biomass supply chain: Sustainable feedstock (at large quantities?)

Competition for lignocellulosic biomass uses

Lignocellulosic Biomass as a world commodity

Lignocellulose recalcitrance

Multi-product Biorrefinery

How to better integrate different technologies?

Balance between energetic products and bioproducts

Dedicated versus mixed 1G/2G biorefineries

Removing the economic barriers (eg. high CaPEX, high OpEX, high risk)

Materials

2. BIOREFINERIES KEY-CHALLENGES FOR NEXT DECADE

Feedstock

Technology

Market uptake

Non-food biomass supply chain: Sustainable feedstock (at large quantities?)

Competition for lignocellulosic biomass uses

Lignocellulosic Biomass as a world commodity

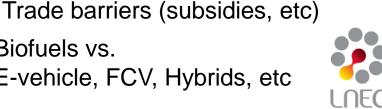
Lignocellulose recalcitrance

Multi-product Biorrefinery

How to better integrate different technologies?

Balance between energetic products and bioproducts

E-vehicle, FCV, Hybrids, etc


Dedicated versus mixed 1G/2G biorefineries

Removing the economic barriers (eg. high CaPEX, high OpEX, high risk)

Biofuels vs.

Demo and flagship Units

Materials

SMall-scale Integrated BIOrefineries : Main Goals

The aim of SMIBIO is to study the technical-economic and environmental viability of small scale integrated biorefinery units capable of processing different kinds of biomass produced in short radius catchments of rural and small urban areas, both in Europe and in LAC countries.

- ☐ How we do this?Local Feedstocks/Wastes = Local Solutions!
- □ By modelling the best technological solutions under proper and real conditions, for different rural/urban regions (at least two in EU countries and two in LAC countries), after considering optimal processing of local biomass in each selected region.
- ☐ The project is developing **appropriate tools and methods** to properly assess the technologies and optimize overall energy efficiency, environmental (LCA), economic (IRR, NPV and production costs), and social impacts (improvement in living conditions, job creation and new opportunities for rural development identification) **for any small-scale integrated biorefinery**.
- ☐ Sustainability impacts will be assessed and validated for the small-scale biorefineries.

SMall-scale Integrated BIOrefineries: Consortium

SMall-scale Integrated BIOrefineries: Working Packages

WP1. Biorefinery Conceptual Design and Selection of Business Case Studies. (Month 1-9)

WP Leader: CIEMAT

Participants: All Partners + Associate Partners + Stakeholders

WP2. Process Simulation of Sugar and Biogas Platforms. (Month 6-30)

WP Leader: UNC

Participants: LNEG, CIEMAT, PUCV, UNAM

WP3. Research for Process Integration and Optimization of Both Platforms. (Month 1-30)

WP Leader: LNEG

Participants: PUCV, CIEMAT, IBt-UNAM

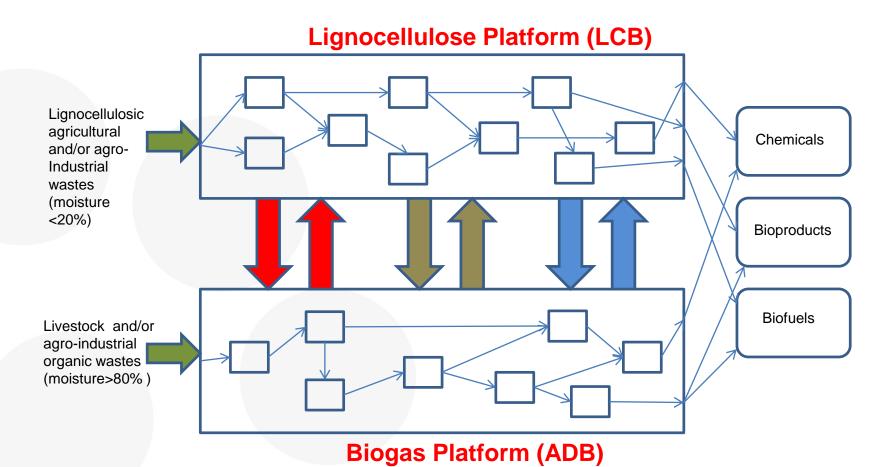
WP4. Process Integration and Optimization of Both Platforms. (Month 6-36)

WP Leader: UNC

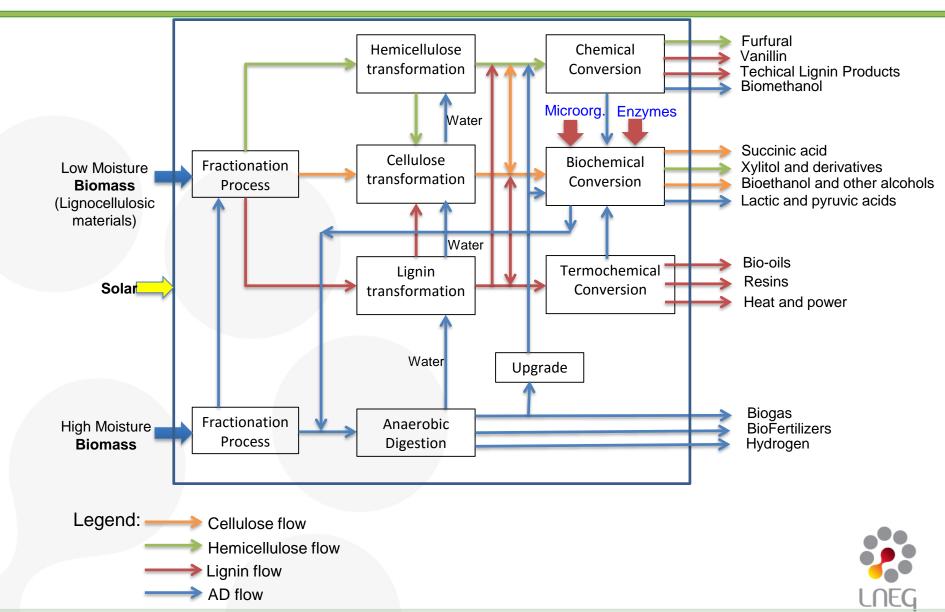
Participants: PUCV, LNEG, WIP, UNC, CIEMAT, IBt-UNAM

WP5. Model Application to Rural Areas. Workshops & Dissemination. (Month 1-36)

WP Leader: WIP


Participants: WIP, UNC, LNEG, CIEMAT, IBt-UNAM, Assoc. Partners and Stakeholders

SMall-scale Integrated BIOrefineries : Two Platform Simplified Model



SMall-scale Integrated BIOrefineries: The Concept

SMALL SCALE BIOREFINERIES!

Is the key for most rural areas in EU and LAC countries...however can them be feasible and sustainable?

HEURISTIC ANALYSIS Local (selected) Feedstocks

Dry Biomass (LCB Platform)

Data from CADOVA (SMIBIO stakeholder partner)

Corn Stover

113,000 ton/year available (in a 50 km radius around Chamusca region)

160,000 ton/year (in a 100 km radius around Chamusca region)

Feedstock properties

Item	Value	Units
Amount (produced)	100 000	ton/year
% Glucan	40.83	%
% Xylan	23.48	%
% Arabinan	3.06	%
% Lignin	16.91	%
% Others*	15.72	%

^{*} Not relevant for the mass balances considered in this study

Concerning the accessibility to the feedstocks (logistics, annual production, competitors, etc.) around 30% of the total amount is considered to be accessible to be used within the biorefinery

Minimum available corn stover: **30,000 ton/year**Theoretical max. Available: **113,000 ton/year**

Wet Biomass (ADB Platform)

Swine Manure

Data from STRADALUX (SMIBIO stakeholder partner) 303 m³/day – 110,000 m³/year of effluent

HEURISTIC ANALYSIS Selected Geographical Area

HEURISTIC ANALYSIS Biorefinery Design

SCENARIO A Ethanol (C6 sugars) + Pentose Molasses + Lignin (CHP)

Pentose molasses for animal feed; local costumers

SCENARIO A' Ethanol + Xylooligosaccharides (XOS) + Lignin (CHP)

XOS to be used as food or feed additive (1% wt.); e.g. prebiotic; World costumers

SCENARIO B Ethanol (C5/C6 sugars) + Lignin (CHP)

Ethanol from C5/C6 sugars; local costumers

SCENARIO C Ethanol (C6 sugars)+ Xylitol (XOH) + Lignin (CHP)

Xylitol production from C5 sugars; World costumers

HEURISTIC ANALYSIS Biorefinery Design

SCENARIO A Ethanol (C6 sugars) + C5 Molasses + Lignin (CHP)

Pentose molasses for animal feed; local costumers

SCENARIO A' Ethanol + Xylooligosaccharides (XOS) + Lignin (CHP)

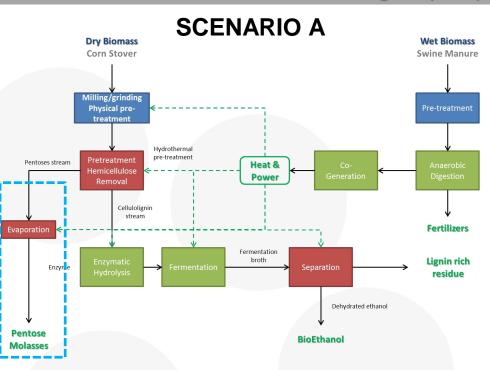
XOS to be used as food or feed additive (1% wt.); e.g. prebiotic; World costumers

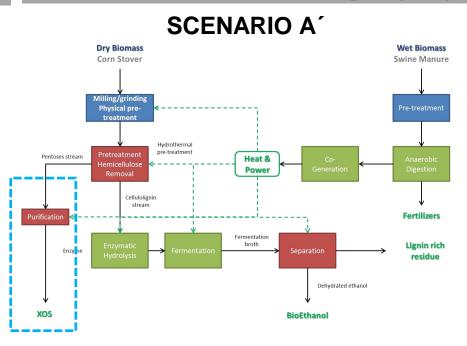
SCENARIO B Ethanol (C5/C6 sugars) + Lignin (CHP)

Ethanol from C5/C6 sugars; local costumers

SCENARIO C Ethanol (C6 sugars)+ Xylitol (XOH) + Lignin (CHP)

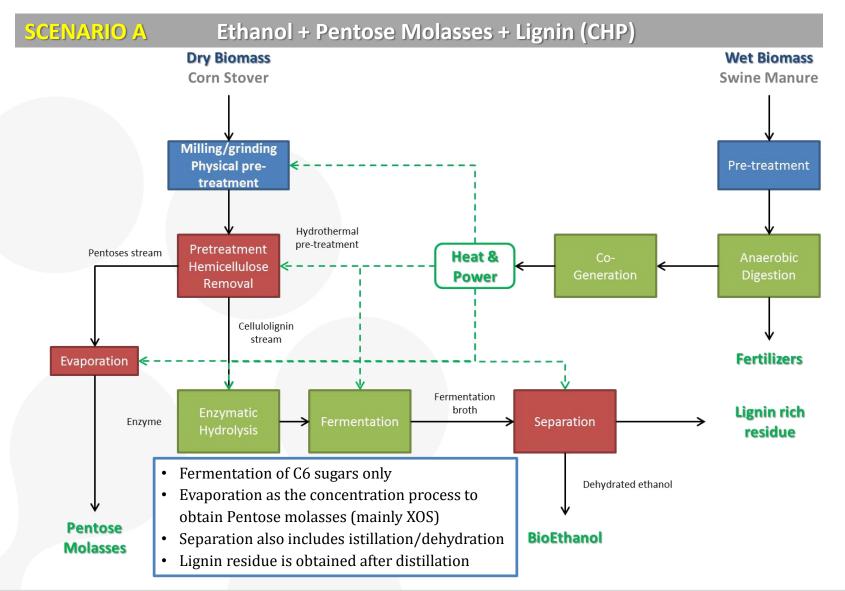
Xylitol production from C5 sugars; World costumers





SCENARIO A EtOH + C5 Molasses + Lignin (CHP)

SCENARIO A' Ethanol + XOS + Lignin (CHP)

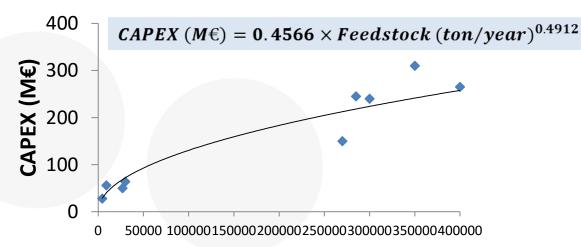

- Fermentation of C6 sugars only
- Evaporation as the concentration process to obtain C5 molasses (mainly XOS) – for feed
- Separation also includes distillation/dehydration
- Lignin residue is obtained after distillation

- Fermentation of C6 sugars only
- Purification step (UF/NF membranes) of XOS for human food
- Separation also includes distillation/dehydration
- Lignin residue is obtained after distillation

HEURISTIC ANALYSIS Preliminary Mass Balance

SCENARIO A Ethanol + Pentose Molasses + Lignin (CHP)

	Technologies / Unit Operations								
Scenario A	Milling	Hemicellulose Removal	Enzymatic Hydrolysis	Fermentation	Evaporation	Distillation	Pre- Treatment	AD	Co- Generation
Matureness Level	3	2	2	3	2	3	3	3	3


	Production (ton/yr)				
Feedstock (ton/yr)	Ethanol	Lignin derivatives	Pentose Molasses		
30,000	4,475	6,802	6,002		
40,000	5,967	9,070	8,003		
50,000	7,459	11,337	10,004		
60,000	8,951	13,604	12,004		
70,000	10,442	15,872	14,005		
80,000	11,934	18,139	16,006		
90,000	13,426	20,407	18,006		
100,000	14,918	22,674	20,007		

HEURISTIC ANALYSIS Preliminary Economic Analysis

Feedstock (ton/year)

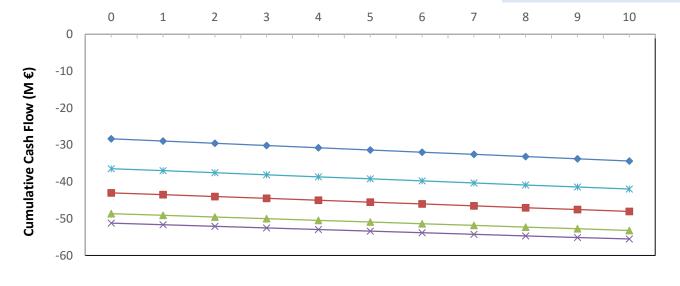
OPEX

SCENARIO A EtOH + C5 Molasses + Lignin

	Cost	Units
1) Feedstock		
Corn Stover	45	€/ton
Enzymes	152	€/ton EtOH
2) Operating Costs		
Distillation	65	€/ton
Steam (Pretreat./Evapor.)	10	€/ton
3) Labour		
Personnel costs	2500	€/month
# workers	20	

Market Prices	€/ton
Feedstock cost	45
Ethanol	600
Lignin	45
Pentose Molasses	135
XOS	3,500
хон	3,600

Cash Flow


Year

SCENARIO A EtOH + Molasses + Lignin

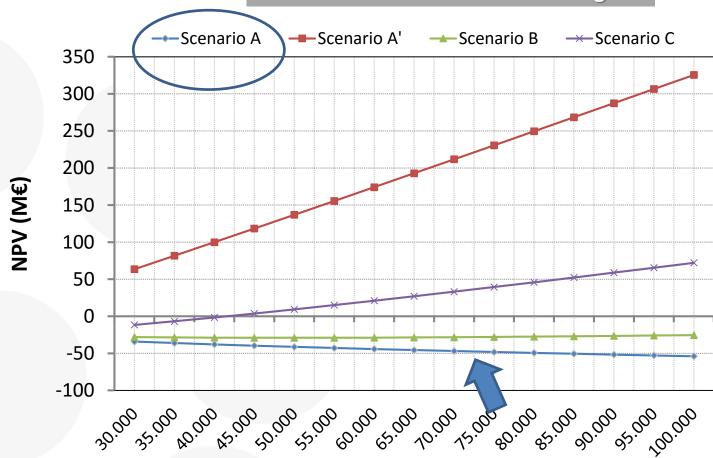
→ 30,000

Cumulative Cash Flow (\in)

 $= -CAPEX + \sum_{i=1}^{n} (Sales - OPEX)$

70,000

* 50,000

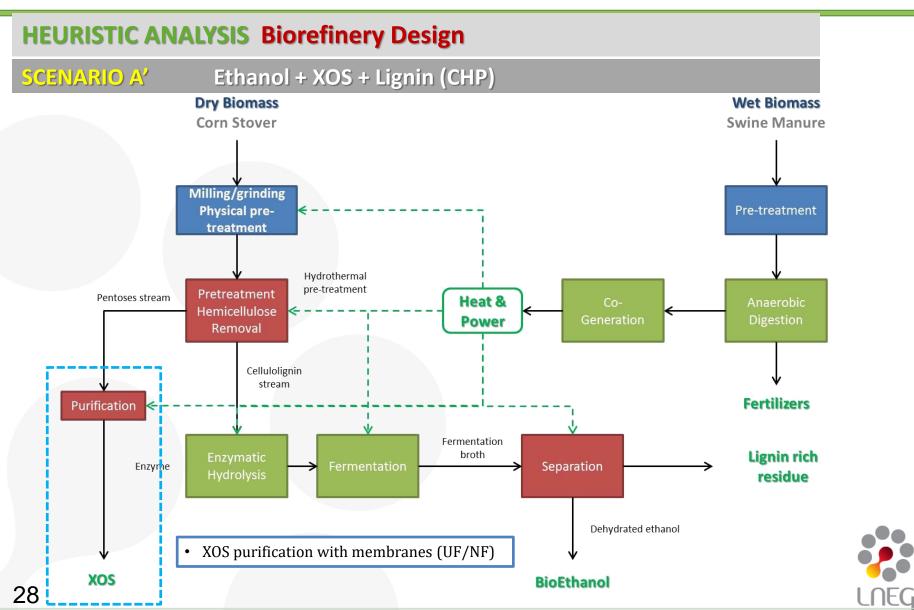


90,000

Net Present Value vs. Scale

SCENARIO A EtOH + Molasses + Lignin

Feedstock (ton/year)

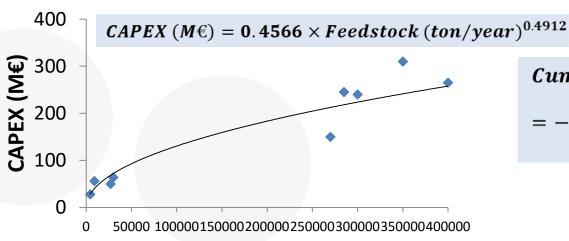

HEURISTIC ANALYSIS Conclusions for SCENARIO A

- Not viable
- Viable if lignin (valorized) is sold at higher prices than 0.90-1.70 €/kg (PBP 5 yrs)
- 🏶 Ethanol Production: 15,540 51,500 L/day
- **②** Ethanol Production Cost: 0.77 0.85 €/L

HEURISTIC ANALYSIS Preliminary Mass Balance

Ethanol + XOS + Lignin (CHP) SCENARIO A'

	Technologies / Unit Operations								
Scenario A'	Milling	Hemicellulose Removal	Enzymatic Hydrolysis	Fermentation	Purification	Distillation	Pre- treatment	AD	Co- Generation
Matureness Level	3	2	2	3	2	3	3	3	3


	Production (ton/yr)				
Feedstock (ton/yr)	Ethanol	Lignin derivatives	XOS		
30,000	4,475	6,802	2,866		
40,000	5,967	9,070	3,822		
50,000	7,459	11,337	4,777		
60,000	8,951	13,604	5,733		
70,000	10,442	15,872	6,688		
80,000	11,934	18,139	7,644		
90,000	13,426	20,407	8,599		
100,000	14,918	22,674	9,554		

HEURISTIC ANALYSIS Preliminary Economic Analysis

Personnel costs

workers

Cumulative Cash Flow (€) $= -CAPEX + \sum_{i=1}^{n} (Sales - OPEX)$

Feedstock (ton/year)

SCENARIO A' EtOH + XOS + Lignin

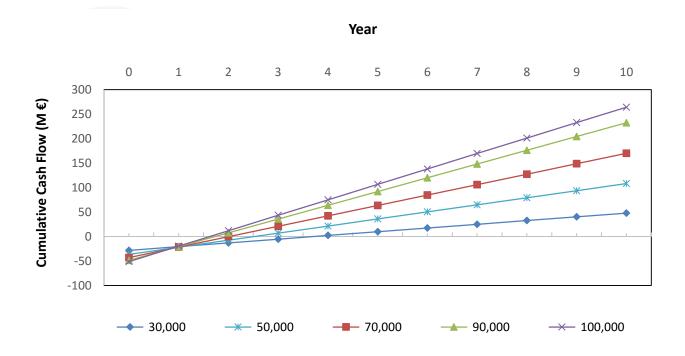
OPEX)

	Cost	Units
1) Feedstock		
Corn Stover	45	€/ton
Enzymes	152	€/ton EtOH
2) Operating Costs		
Distillation	65	€/ton
Steam (Pretreat./Evapor.)	10	€/ton
Purification (XOS)	8*	€/ton hydrolysate
3) Labour		

2500

20

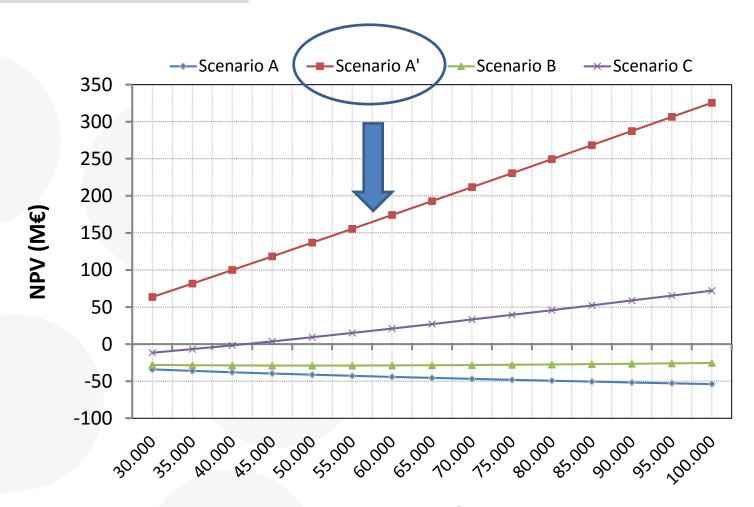
Market Prices	€/ton
Feedstock cost	45
Ethanol	600
Lignin	45
Pentose Molasses	135
xos	3,500
хон	3,600



€/month

Cash Flow

SCENARIO A' EtOH + XOS + Lignin (CHP)



Net Present Value vs. Scale

SCENARIO A'

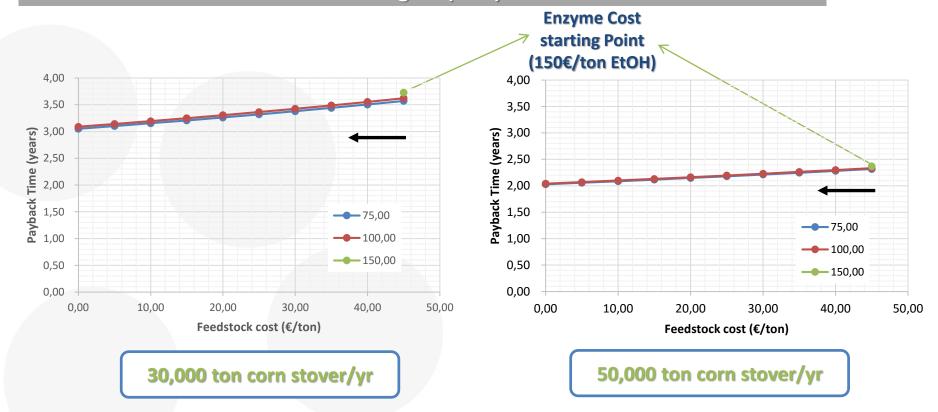
Ethanol + XOS + Lignin (CHP)

Feedstock (ton/year)

HEURISTIC ANALYSIS Conclusions

SCENARIO A' Ethanol + Xylooligosaccharides (XOS) + Lignin (CHP)

- Viable for any scale (among the available feedstock range)
- Ethanol Production: 15,540 51,500 L/day
- Ethanol Production Cost: 0.63 0.95 €/L



HEURISTIC ANALYSIS Sensitivity Analysis: Enzymes and Feedstock cost

SCENARIO A'

Ethanol + XOS + Lignin (CHP)

Viable scenario → small change in PBT with enzyme and feedstock cost variation

www.smibio.net - the project website

More information

- . Scientific and technological
- . The SMIBIO Project
- . Benefit & added value
- · Economic impact and exploitation
- · Results of the SMIBIO Project

Login Form

Hi Ingo Ball,

Welcome to the SMIBIO Project website!

The main aim of the SMIBIO Project is to develop small-scale integrated biorefinery units capable of processing different kinds of biomass produced in short radius catchments rural and small urban areas, both in Europe and in CELAC (Community of Latin American and Caribbean States).

News & Events

SMIBIO Kick-off meeting & Site visit

25-27 November 2015, Concepción and Valparaiso, Chile

In this first SMIBIO meeting in Concepcion representatives from all Project Partners (LNEG, CIEMAT, WIP, PUCV, UNC and IBt-UNAM) as well as representatives from two Associate Partners (INTA and CADOVA) participated. On the first day of the meeting the Project Partners discussed organisational issues and set up a first project schedule.

I Encuentro de Biotecnología

www.lneg.pt

Research Teams:

Francisco Gírio Florbela Carvalheiro Tiago Lopes

Private Companies:

www.lneg.pt

Join us on the way to more sustainability!!

Thanks/Gracias/Obrigado

Contact: <u>francisco.girio@lneg.pt</u>

